高速移動場景現(xiàn)有覆蓋解決方案
多小區(qū)合并組網(wǎng)方案
多小區(qū)合并的組網(wǎng)方式,通過擴大單小區(qū)覆蓋面積,增大重選/切換帶,解決高速環(huán)境下的連續(xù)性覆蓋問題,從而解決終端在高速移動環(huán)境中的駐留、接入、呼叫等問題,提升終端小區(qū)重選、小區(qū)切換成功率,降低終端掉話率。
普通小區(qū)結構如圖1所示。
![](http://image.c114.net/n110127002.jpg)
圖1 普通小區(qū)結構示意圖(單站址單扇區(qū))
普通小區(qū)結構即單扇區(qū)覆蓋一個小區(qū),單個小區(qū)覆蓋范圍有限。其中BBU為
基站基帶單元,RRU為基站
射頻單元。
經(jīng)過多小區(qū)合并,小區(qū)結構示意圖如圖2 所示。
![](http://image.c114.net/n110127003.jpg)
圖2 多站址多扇區(qū)合并示意圖
采用多小區(qū)合并之后,原來多個小區(qū)之間的切換區(qū)域變成了同一個小區(qū)內(nèi)的接力點,減少了切換,無需再預留信號重疊區(qū)域,從而擴大了單站覆蓋距離。成倍降低終端用戶在高速環(huán)境下的切換、重選次數(shù),提升用戶感知。
可以看出,多小區(qū)合并組網(wǎng)方案,主要解決了移動性管理的問題。
高速無線
直放站方案
在多小區(qū)合并組網(wǎng)方案基礎上,引入高速無線直放站,通過安裝在車廂外部的施主
天線接收軌道沿線的TD-SCDMA宏蜂窩小區(qū)信號,并將放大后的信號通過泄漏
電纜傳遞到乘客車廂,覆蓋車廂內(nèi)用戶。
高速無線直放站的引入,在一定程度上解決了穿透損耗的問題。
現(xiàn)有方案存在的問題
從上述現(xiàn)有方案描述和分析看,現(xiàn)有的高速移動場景覆蓋解決方案解決了移動性管理、穿透損耗、多普勒頻偏的部分問題,一定程度上保證了終端用戶基本業(yè)務(如語音、低速數(shù)據(jù))的需求,但仍然存在一些明顯的問題,見下表:
![](http://image.c114.net/n110127004.jpg)
基于上述分析,目前的方案不能解決高速場景下
網(wǎng)絡容量受限的問題。為了更好地解決這一問題,本文將在下面章節(jié)中介紹一種基于
FemtoCell的高速場景下覆蓋解決方案。
FemtoCell覆蓋解決方案
FemtoCell(家庭基站小區(qū))技術是目前眾多通信設備商和主流
運營商關注的重點。它的應用場景主要定位為家庭或者中小企業(yè),一個FemtoCell單元類似于一個
WLAN的
無線接入點,通過普通的
以太網(wǎng)口或其他有線連接接入到移動運營商的核心網(wǎng)絡,以實現(xiàn)
電信級運營和網(wǎng)絡覆蓋[1]。
本文將FemtoCell技術應用到高速移動場景,該方案采用
LTE網(wǎng)絡作為無線
寬帶回傳網(wǎng)絡(稱為Backhaul),在每個列車上部署FemtoCell(標準研究中通常稱為HNB,Home Node B家庭基站)和FemtoGW(標準研究中通常稱為HNB GW,HNB GateWay家庭基站
網(wǎng)關),通過LTE回傳網(wǎng)絡將這些FemtoCell接入到核心網(wǎng)絡。LTE回傳設備在宏蜂窩網(wǎng)絡中相當于一個高速移動的終端。
網(wǎng)絡架構介紹
在介紹高速場景下FemtoCell覆蓋解決方案之前,先對標準中的FemtoCell系統(tǒng)架構做簡要介紹[2],其網(wǎng)絡架構如下圖所示:
![](http://image.c114.net/n110127005.jpg)
圖4Home Node B網(wǎng)絡架構圖
可以看出,在FemtoCell系統(tǒng)中引入的網(wǎng)元有HNB、HNB GW、SeGW(Security GateWay)、HMS(HNB Management System)。
其中,HNB集成了Node B和RNC的主要功能。HNB GW主要是為HNB和CN之間的連接提供匯聚/分發(fā)功能以及負責對HNB的注冊管理等。SeGW安全網(wǎng)關提供HNB到HMS和HNB GW的安全接入、HNB鑒權等功能。HMS主要功能是為HNB提供管理和參數(shù)配置。
本文將要介紹的車載FemtoCell系統(tǒng)網(wǎng)絡架構如圖5 和圖6 所示:
![](http://image.c114.net/n110127006.jpg)
圖6所示的FemtoCell系統(tǒng)網(wǎng)絡架構在參考LTE-Advanced Relay的網(wǎng)絡架構[3]設計的基礎上,針對高速移動場景覆蓋特點,進行針對性調(diào)整和擴展,具體見下面網(wǎng)元介紹。
需要特別說明的是:這里的TrainGW安裝于車廂上,完成HNB數(shù)據(jù)的匯聚/分發(fā)、HNB注冊管理等功能。部署在車廂上的主要原因有:
1)考慮到單個HNB覆蓋范圍有限、業(yè)務容量有限,一般列車都會放置多個HNB。若將HNB GW作為地面固定設備部署,車廂上同樣需要一個替代設備對HNB數(shù)據(jù)進行匯聚/分發(fā),邏輯功能重復。
2) 車內(nèi)HNB隨著列車運動而位置不斷變化,如果HNB GW在地面固定部署,則HNB GW需要跟蹤HNB的移動信息,不僅實現(xiàn)復雜,還會增加業(yè)務時延等。
因此將HNB GW部署于車內(nèi)較為合適。
網(wǎng)元介紹
TrainGW
TrainGW相當于LTE-Advanced Relay架構中的Relay節(jié)點,包括了HNB(或HeNB GW)功能和eUE功能(又稱為TrainGW eUE),HNB/HeNB GW功能為車內(nèi)各個HNB(或HeNB)提供服務,負責對HNB(或HeNB)與CN之間的
信令和數(shù)據(jù)進行匯聚和轉發(fā),eUE功能用于在回傳鏈路上收發(fā)數(shù)據(jù),eUE上的用戶平面數(shù)據(jù)即為HNB與CN之間交互的信令和數(shù)據(jù)。
該網(wǎng)元通過Iuh接口與車廂內(nèi)部署的HNB連接,為車廂內(nèi)的終端用戶提供接入。
Macro-eNB
Macro-eNB為LTE網(wǎng)絡中的宏小區(qū),實現(xiàn)與TrainGW eUE的空口連接,完成TrainGW eUE與LTE核心網(wǎng)之間的數(shù)據(jù)轉發(fā)。
TrainGW eUE的MME
為了使TrainGW的eUE功能可以正常工作,這里引入了TrainGW eUE的MME和TrainGW eUE的SGW/PGW兩個功能實體。TrainGW eUE的MME負責為TrainGW eUE建立S1接口和信令連接,與LTE網(wǎng)絡中的MME功能一致。
Macro eNB需要與TrainGW的MME建立一個S1接口,并為其下轄的每個TrainGW維護一條S1連接。
TrainGW eUE的SGW/PGW
TrainGW eUE的SGW/PGW負責對HNB與CN之間以及HNB與HMS之間交互的信令和數(shù)據(jù)進行匯聚和轉發(fā),與LTE網(wǎng)絡中的SGW/PGW功能一致。
與LTE-Advanced Relay架構的區(qū)別是,TrainGW SGW/PGW 和TrainGW MME 通過核心網(wǎng)間接口直接與
3G CN核心網(wǎng)互聯(lián),支持3G HNB、3G用戶終端設備對3G CN的訪問。
HMS
相對于LTE-Advanced Relay網(wǎng)絡架構,這里引入HNB系統(tǒng)中的HMS,HMS為網(wǎng)絡管理設備,基于TR-069網(wǎng)絡管理協(xié)議實現(xiàn),負責為NNB提供配置參數(shù),實現(xiàn)HNB的位置認證功能,并且為HNB分配合適的服務HNB GW,為HNB提供性能管理,告警管理。
SeGW
相對于LTE-Advanced Relay網(wǎng)絡架構,這里引入HNB系統(tǒng)中的SeGW,主要為HNB與HMS之間的連接安全性提供保證,在地面固定部署。
車載系統(tǒng)HNB通過
光纖或電纜連接HNB GW,一般為運營商或鐵路部門專用網(wǎng)絡部署,因此HNB到HNB GW之間可以保證安全接入。
可以看出,TrainGW eUE 、Macro-eNB、 TrainGW SGW/PGW、TrainGW MME共同構成了HNB 與3G 核心網(wǎng)CN間的Iu接口數(shù)據(jù)傳輸通道。
數(shù)據(jù)流向
User UE的控制平面和用戶平面數(shù)據(jù)被映射到TrainGW-eUE的用戶平面承載,經(jīng)由Macro eNB和TrainGW SGW/PGW,透傳給3G 核心網(wǎng)CN。
對關鍵接口的影響
Iuh接口
Iuh接口傳輸承載由運營商或鐵路部門部署的光纖或電纜傳輸,對接口協(xié)議沒有影響。
Iu接口
Iu接口數(shù)據(jù)傳輸通道由TrainGW eUE 、Macro-eNB、 TrainGW SGW/PGW、TrainGW MME共同構成,對接口協(xié)議沒有影響。
HMS和HNB之間接口
FemtoCell固定網(wǎng)絡中通過HNBIP網(wǎng)絡SeGWHMS,實現(xiàn)HMS與HNB之間的數(shù)據(jù)傳輸,接口協(xié)議采用TR-069。高速鐵路覆蓋中,HMS與HNB之間的數(shù)據(jù)傳輸通過HNBTrainGWLTE Macro-eNBLTE核心網(wǎng)
IP網(wǎng)絡SeGWHMS實現(xiàn),對接口協(xié)議沒有影響。
業(yè)務需求可行性分析
本節(jié)將根據(jù)高速鐵路業(yè)務需求和
TDD LTE回傳網(wǎng)絡所能提供的系統(tǒng)容量,進行本方案支持用戶業(yè)務需求的可行性分析。
根據(jù)2.2節(jié)統(tǒng)計結果,折算到Iu口容量,見下表:
![](http://image.c114.net/n110127007.jpg)
其中,CS12.2k語音業(yè)務和數(shù)據(jù)業(yè)務轉換為Iu口數(shù)據(jù)格式,需要增加各種頭開銷,傳輸速率計算時分別對應一個速率倍增系數(shù),即2.871和1.322。
根據(jù)上述對比,可以看到TDD LTE網(wǎng)絡20M帶寬、時隙配比為D:S:U=4:2:4的配置(4個下行時隙:2個特殊時隙:4個上行時隙)下,能夠滿足傳輸容量的要求,相對于采用傳統(tǒng)的車廂外TD-SCDMA宏小區(qū)覆蓋的方案具有明顯的優(yōu)勢。
關鍵技術問題分析
干擾
高速FemtoCell組網(wǎng)方式,主要的干擾場景為:
![](http://image.c114.net/n110127008.jpg)
圖7 干擾場景示意圖
車內(nèi)相鄰FemtoCell之間的干擾
干擾場景如圖7中(1)所示。
根據(jù)1.2節(jié)統(tǒng)計,列車每車廂業(yè)務量需求下行在1 Mbps左右,上行在0.04 M左右,因此每車廂部署1個單載波FemtoCell可以滿足容量需求,即可以采用每個FemtoCell小區(qū)單頻點覆蓋,車內(nèi)干擾可以通過頻點規(guī)劃規(guī)避同頻干擾。在可用頻點個數(shù)允許的情況下,盡量增大FemtoCell頻點復用距離。比如,F(xiàn)emtoCell采用目前TD-SCDMA網(wǎng)絡常用的3個
室內(nèi)覆蓋頻點進行覆蓋,那么頻點復用距離為車廂長度的三倍。
另外,車廂之間有車門阻隔可以屏蔽一定的干擾。
列車FemtoCell與室外宏小區(qū)之間的干擾
干擾場景如圖7中(2)所示。
列車FemtoCell與室外宏小區(qū)之間的干擾可以通過異頻組網(wǎng)的方式進行規(guī)避?紤]到鐵路沿線通常不會有密集的居民和辦公建筑分布,列車內(nèi)FemtoCell覆蓋可以復用家庭基站組網(wǎng)的頻率資源,比如規(guī)劃給室內(nèi)覆蓋的頻率資源。
兩列車FemtoCell之間的干擾
干擾場景如圖7中(3)所示。
高速場景下列車通常采用金屬車廂,兩輛列車之間的隔離度在25~30 dB以上,在很大程度上隔離了相互之間的干擾。尤其在列車行駛過程中,相向運動,兩輛列車并列時間<5 s(按照動車組行駛速度200 km/h,列車長度400 m計算),列車之間FemoCell相互干擾影響較小。
移動性管理
小區(qū)切換/重選
本文提出的高速鐵路FemtoCell覆蓋解決方案中涉及兩種類型終端,一種是用戶終端,另一種是車載網(wǎng)關。車載網(wǎng)關同時作為車外宏小區(qū)的終端,隨著列車運動,需要進行小區(qū)駐留、接入、重選和切換等一系列過程,為了提高車載網(wǎng)關的移動性能,可以采用現(xiàn)有的多小區(qū)合并、優(yōu)化切換重選參數(shù)、定向接入/切換等多種方案。因此本節(jié)將重點討論車內(nèi)用戶的移動性問題。
車內(nèi)用戶的移動又包括2種場景:用戶在列車上不同F(xiàn)emtoCell間移動的情況(如圖8中(1)所示);車內(nèi)用戶上下車的情況。其中,用戶在列車上不同F(xiàn)emtoCell間移動的情況,可以采用現(xiàn)有的FemtoCell間用戶移動處理方式[5](TrainGW進行處理)。車內(nèi)用戶上下車的移動性問題包括:車內(nèi)用戶移動至車外(如圖8中(2)所示)和車外用戶移動至車內(nèi)(如圖8中(3)所示)兩種情況,下面進行具體分析。
![](http://image.c114.net/n110127009.jpg)
圖8 切換/重選場景示意圖
車內(nèi)用戶向車外小區(qū)切換/重選
需要將車外宏小區(qū)配置成車內(nèi)FemtoCell小區(qū)的鄰區(qū),可以利用HNB現(xiàn)有的自動監(jiān)聽檢測功能進行鄰區(qū)檢測,選擇合適的車外宏小區(qū)作為鄰區(qū)。但是考慮到車體穿透損耗,車內(nèi)HNB對鄰區(qū)的檢測可能不夠準確,這個是需要進一步研究的問題。
同時列車在運行過程中不可能有用戶上下車,此時希望車內(nèi)終端用戶能夠一直駐留在車內(nèi)FemtoCell小區(qū)內(nèi),此時鄰區(qū)列表中只需要配置車上相鄰的FemtoCell。因此車內(nèi)FemtoCell小區(qū)的鄰區(qū)也可以靈活地進行配置。
車外用戶向車內(nèi)小區(qū)切換/重選
由于經(jīng)過一個站臺的車輛及停留時間都不固定,若將所有可能經(jīng)過列車的所有FemtoCell小區(qū)都添加為鄰區(qū),則一是可能會超出鄰區(qū)數(shù)限制,二是會增加終端的測量上報的負荷;若FemtoCell鄰區(qū)只是在列車進站時添加,出站時刪除,則會引起宏小區(qū)廣播頻繁更新,導致眾多終端頻繁讀取廣播。上述問題同樣存在于室內(nèi)FemtoCell組網(wǎng)場景,需要進一步的研究。
網(wǎng)絡尋呼
對TrainGW的尋呼
車外宏小區(qū)對TrainGW的尋呼應遵循車外宏小區(qū)對一般終端的尋呼方式和流程,不需要特殊調(diào)整。并且TrainGW在工作過程中承載大量真實終端數(shù)據(jù),一般不會處于空閑狀態(tài),發(fā)起尋呼次數(shù)很少,因為尋呼導致的TrainGW與車外宏小區(qū)連接建立時延對FemtoCell內(nèi)終端業(yè)務的影響可以忽略。
對用戶終端(User-UE)的尋呼
3G網(wǎng)絡對用戶終端的尋呼消息,作為用戶面數(shù)據(jù),以IP包的形式傳輸給TrainGW eUE的SGW/PGW,此時TrainGW eUE的SGW/PGW相當于一個數(shù)據(jù)
路由器,在LTE回傳網(wǎng)絡中最終傳輸給TrainGW eUE,在TrainGW內(nèi)部把這些IP包數(shù)據(jù)傳遞給HNB GW,至此完成了尋呼數(shù)據(jù)在Iu口上的傳輸。
TrainGW可以通過現(xiàn)有尋呼方式對服務的用戶終端進行尋呼:當TrainGW收到CN 下發(fā)的尋呼消息時,根據(jù)尋呼消息中的UE 標識,通過查詢UE Context,找到UE 所附著的FemtoCell 小區(qū),并在該FemtoCell 范圍內(nèi)實現(xiàn)精確尋呼。
同步
由于終端在列車內(nèi)外的移動性的需要,要求車內(nèi)FemtoCell之間,車內(nèi)FemtoCell與車外宏小區(qū)之間保持同步。采用的方法可以有:空口同步、
GPS同步。
空口同步:利用eUE得到的3G車外宏小區(qū)同步參考,進行同步調(diào)整。
優(yōu)點:可以在任何存在3G網(wǎng)絡的地方獲取同步參考。
缺點:需要TrainGW eUE同時支持3G網(wǎng)絡同步信號的接收。
GPS同步:利用車上安裝的GPS設備獲取同步參考信號。
優(yōu)點:不需要TrainGW eUE同時支持3G網(wǎng)絡同步信號的接收。
缺點:列車進站后,可能不能隨時接收GPS信號。
QoS保證
TrainGW作為一個大容量、高速移動的終端,匯集了來自大量用戶終端多種QoS等級的業(yè)務數(shù)據(jù)。LTE車外宏小區(qū)作為業(yè)務數(shù)據(jù)的中轉,需要分別保證不同業(yè)務的QoS要求。同時在不能為高速鐵路提供專網(wǎng)組網(wǎng)的情況下,需要保證車上用戶和車外直接接入車外宏小區(qū)的用戶能得到公平調(diào)度。
可以采取如下方案:
TrainGW 根據(jù)車內(nèi)UE傳輸數(shù)據(jù)的QoS類型建立不同的優(yōu)先級承載,來自同一TrainGW不同UE相同QoS類型的業(yè)務可以映射到同一條優(yōu)先級承載上。車外宏小區(qū)根據(jù)業(yè)務優(yōu)先級調(diào)度TrainGW 或車外宏小區(qū)其他終端;蛘呖梢愿鶕(jù)對車載業(yè)務保證的需求,調(diào)整車載業(yè)務優(yōu)先級。
方案小結
根據(jù)上述分析,基于FemtoCell覆蓋高速移動場景的方案,相對于傳統(tǒng)覆蓋方案可以解決一些實際的問題:
HNB安裝在車廂內(nèi)部,通過TrainGW與車廂外宏小區(qū)建立連接,解決了車廂穿透損耗對空口傳輸?shù)挠绊憽?br />
采用LTE網(wǎng)絡作為無線寬帶回傳網(wǎng)絡,解決了高速場景下用戶密集,3G網(wǎng)絡容量受限的問題。
移動性管理方面,本方案中車廂外LTE宏小區(qū)組網(wǎng)時仍然可以采用多小區(qū)合并組網(wǎng)技術,可以解決TrainGW eUE終端在LTE宏小區(qū)中停留過短的問題。并且TrainGW匯聚了大量用戶終端的數(shù)據(jù),作為一個車外宏小區(qū)的終端在網(wǎng)絡中移動,車廂內(nèi)FemtoCell之間的用戶切換可以直接經(jīng)過TrainGW進行,切換和小區(qū)重選等移動性過程相當于在低速環(huán)境下進行。
同時,該方案在諸多細節(jié)上還需要進一步研究,如:
針對高速場景下用戶終端移動和傳播環(huán)境特點,HNB鄰區(qū)配置策略和方法需要進一步研究和優(yōu)化。
為了方便運營商對用戶
漫游計費的統(tǒng)計,針對HNB在隨著列車移動的特點,需要對HNB位置區(qū)/路由區(qū)的維護方案進一步研究。
采用LTE空口回傳技術,空口傳輸速率受信道條件,網(wǎng)絡負荷等因素的影響,會引入數(shù)據(jù)回傳的時延。因此需要對車載用戶終端的業(yè)務質(zhì)量保證策略進一步研究和優(yōu)化。
總結
高速移動場景已經(jīng)成為3G
移動通信重要的組網(wǎng)場景,F(xiàn)emtoCell由于其靈活的組網(wǎng)方式,已經(jīng)在室內(nèi)場景組網(wǎng)中得到了廣泛的應用。本文結合高速移動場景的特點,提出了一種利用FemtoCell基站對高速鐵路車廂進行覆蓋的組網(wǎng)方式,并給出實現(xiàn)的網(wǎng)絡架構,及干擾、移動性管理、同步、QoS保證等關鍵技術問題分析。根據(jù)初步的研究分析,該方案結合現(xiàn)有的高速移動場景覆蓋技術,可以解決高速移動場景下移動性管理、網(wǎng)絡容量受限及車廂穿透損耗等問題,可以明顯提升終端用戶的業(yè)務體驗。同時,方案中還存在一些細節(jié)需要進一步研究和優(yōu)化,需要后續(xù)關注。
參考文獻
3GPP TR 25.820, “3G Home Node B Study Item Technical Report”, Sep 2008.
CCSA TC5-WG9-2009-553B, TD-SCDMA Home Node B研究報告v3.0.
3GPP TR 36.806, “Relay architectures for E-
UTRA (LTE-Advanced)”, 2010.3.
王映民,孫韶輝,TD-LTE技術原理與系統(tǒng)設計,北京,人民郵電出版,2010.6
3GPP TR 25.367, “Mobility procedures for Home Node B”, July 2010.