1. 常規(guī)雙邊帶調(diào)幅(DSB-AM)
2. 雙邊帶調(diào)幅的調(diào)制(DSB)
3. 單邊帶調(diào)制(SSB)
4. 殘留邊帶調(diào)制(VSB)
常規(guī)雙邊帶調(diào)幅(DSB-AM)
S AM (t ) = [ A+ f (t )] cos(ωt + θ )
A 其中: 0 外加直流; f (t ) 調(diào)制信號(hào); ω 載波信號(hào)的角頻率; θ載波信號(hào)的起始相位。 這是簡(jiǎn)單和直觀的調(diào)制方法, 可用包絡(luò)檢波的方法很容易恢復(fù) 原始的調(diào)制信號(hào)。 [
檢波不失真的前提是:A+ f (t )] ≥ 0 ; 否則,會(huì)出現(xiàn)過(guò)調(diào)幅,舉例說(shuō)明。
①調(diào)制信號(hào)為單頻余弦 令 則有f (t ) = Am cos(Ω mt + θ m ) S AM (t ) = [ A0 + Am cos(Ω mt + θ m )] cos(ωc t + θ c ) = A0 [1 + β AM cos(Ω mt + θ m )] cos(ωc t + θ c )β 其中: AM Am = ;為調(diào)幅指數(shù),其值應(yīng)≤1。 A0
②調(diào)制信號(hào)為確定性信號(hào)時(shí)的已調(diào)信號(hào)頻譜 令 S AM (t ) = [ A0 + f (t )] cos(ωc t + θ c ) 1 = [ A0 + f (t )][e j (ωct +θ c ) + e ? j (ωct +θ c ) ] 2若f(t)的頻譜為 F(ω),由傅氏變換F [ A0 ] = 2πA0δ (ω )F [ f (t )e ± jωct ] = F (ω m ωc )可得1 S AM (ω ) = [2πA0δ (ω ? ωc ) + F (ω ? ωc )]e jθ c 2 1 + [2πA0δ (ω + ωc ) + F (ω + ωc )]e ? jθ c 2 為簡(jiǎn)化起見(jiàn),令θ=0,則有1 S AM (ω ) = πA0δ (ω ? ωc ) + F (ω ? ωc ) 2 1 + πA0δ (ω + ωc ) + F (ω + ωc ) 2若用卷積表示,令θ=0,則有S AM (t ) = [ A0 + f (t )] cos(ωc t ) = m(t ) ? c(t ) 1 S AM (ω ) = [m(ω ) ? c(ω )] 2π
其中:m(t ) = A0 + f (t ), c(t ) = cos ωc t M (ω ) = F [m(t )] = 2πA0δ (ω ) + F (ω ) C (ω ) = F [cos ωc t ] = π [δ (ω ? ωc ) + δ (ω + ωc )]此結(jié)果與上述結(jié)果完全相同。
③功率分配(平均功率)2 S AM = S AM (t ) = [ A0 + f (t )]2 cos 2 ωc t由于 f (t ) = 0, cos 2ωc t = 0 S AM A02 f 2 (t ) = + = Sc + S f 2 2 Sc