利用TDR (時域反射計)測量傳輸延時

相關專題: 芯片

摘要:隨著時鐘速率的提高,利用高速示波器有源探頭測量延時的傳統(tǒng)方法很難獲得準確結果。這些探頭成為高速信號通路的一部分,并造成被測信號的失真,引入誤差。探頭還必須直接置于器件引腳,以消除PCB (印刷電路板)引線長度產(chǎn)生的延時誤差,滿足探頭位置的這一要求是困難而復雜的過程。本文介紹了如何利用TDR (時域反射計)測量降低探頭誤差的方法,有助于提高傳輸延時測量精度。

分析方法

本文基于以下三個前提:

1.利用TDR (時域反射計)減小探頭誤差。TDR通常用來測量信號通路長度與阻抗變化的關系。TDR也是測量傳輸延2.時的重要工具。

2.避免直接探測。由于加載的原因,有源探頭會使測量變得復雜,并引入誤差。

3.利用一個實例演示這一方法。本文將以MAX9979為例,該芯片為高速引腳電子電路,適合于ATE系統(tǒng)。芯片內(nèi)部集成了雙路高速驅(qū)動器、有源負載以及工作在1Gbps以上的窗比較器。

此處介紹的方法適用于任何高速器件。

TDR原理

TDR測試方法中,沿信號通路傳輸高速信號邊沿,并觀察其反射信號。反射能夠說明信號通路的阻抗以及阻抗變化時信號延時的變化,TDR測試的簡單示意圖如圖1所示:

圖1. TDR原理,TDR測量基于反射系數(shù)ρ,其中ρ = (VREFLECTED/VINCIDENT)。最終,ZO = ρ × (1 + ρ)/(1 - ρ)。從圖1可以得到兩個重要概念:

1.TDLY是我們將要測量的PCB (印刷電路板)引線延時。

2.ZO是被測PCB引線的阻抗。

儀器和*估板

為了測量納秒級的延時,需要非常快的脈沖發(fā)生器、高速示波器以及高速探頭。我們也可以利用具有TDR測量功能的Tektronix? 8000 (圖2)系列示波器(TDS8000、CSA8000或CSA8200),配合80E04 TDR采樣模塊使用。本文采用MAX9979EVKIT (*估板)、HEWLETT Packard 8082A脈沖發(fā)生器和TDS8000/80E04進行演示。圖3所示為MAX9979EVKIT部分電路?梢赃x擇使用任何具有TDR功能的高速示波器和任何高速差分脈沖發(fā)生器,同樣能夠獲得相似結果。

圖2. Tektronix TDS8000系列具有采樣模式的示波器

圖3. MAX9979EVKIT (部分)

分析中將進行以下測量:

1.從PCB的SMA邊緣連接器DATA1/NDATA1至MAX9979 IC輸入引腳DATA1/NDATA1的延時。從MAX9979的DUT1 (被測器件)輸出通過SMA連接器J18的延時。

2.連接DUT1輸出至CSA8000的測試電纜延時。

3.從DATA1/NDATA1輸入至DUT1輸出,通過電纜到達CSA8000的總延時。

4.最后,計算MAX9979的實際延時。

DATA1/NDATA1輸入建模

由于人們對TDR響應比較困惑,我們首先利用SPICE仿真器構建輸入延時的模型。然后我們將仿真結果與實際測量進行比較,參見圖4。

圖4. 等效輸入原理圖和最終仿真模型

圖4注釋:

1.PCB引線設定為6in長,阻抗為65Ω。實際上,這是DATA1/NDATA1 PCB引線的真實阻抗。理想情況下為50Ω,但我們從TDR測量結果將會看到該值為63Ω。

2.NDATA1輸出端接至地。由于DATA1和NDATA1對稱,而且距離MAX9979引腳的長度相同,所以僅測量DATA1的PCB引線。

3.對信號發(fā)生器的12in電纜進行建模,但實際傳輸延時測量證明并不需要這一建模。

 

   來源:中國電子應用網(wǎng)
微信掃描分享本文到朋友圈
掃碼關注5G通信官方公眾號,免費領取以下5G精品資料
  • 1、回復“YD5GAI”免費領取《中國移動:5G網(wǎng)絡AI應用典型場景技術解決方案白皮書
  • 2、回復“5G6G”免費領取《5G_6G毫米波測試技術白皮書-2022_03-21
  • 3、回復“YD6G”免費領取《中國移動:6G至簡無線接入網(wǎng)白皮書
  • 4、回復“LTBPS”免費領取《《中國聯(lián)通5G終端白皮書》
  • 5、回復“ZGDX”免費領取《中國電信5GNTN技術白皮書
  • 6、回復“TXSB”免費領取《通信設備安裝工程施工工藝圖解
  • 7、回復“YDSL”免費領取《中國移動算力并網(wǎng)白皮書
  • 8、回復“5GX3”免費領取《R1623501-g605G的系統(tǒng)架構1
  • 本周熱點本月熱點

     

      最熱通信招聘

      最新招聘信息