【摘要】簡要介紹了頻譜推理的發(fā)展現(xiàn)狀,提出了一種多時隙頻譜的推理——長短時記憶網(wǎng)絡(luò)(LSTM)推理法,在其基礎(chǔ)上結(jié)合神經(jīng)網(wǎng)絡(luò)算法,拓展衍生出時頻二維頻譜推理法和時空頻三維頻譜推理法,能夠在有限的、不連續(xù)的時空頻多維頻譜監(jiān)測數(shù)據(jù)情況下實現(xiàn)頻譜推理預測,為戰(zhàn)場電磁頻譜態(tài)勢生成和頻譜管控提供了支撐。
【關(guān)鍵詞】頻譜推理;神經(jīng)網(wǎng)絡(luò);時空頻
doi:10.3969/j.issn.1006-1010.2018.02.000 中圖分類號:TN97 文獻標志碼:A 文章編號:1006-1010(2018)02-0000-00
引用格式:周佳宇,吳皓,周祥. 基于神經(jīng)網(wǎng)絡(luò)的多維頻譜推理方法探討[J]. 移動通信, 2018,42(2): 00-00.
A Study of Neural Network Based Multi-Dimensional Spectrum Reasoning Method
ZHOU Jiayu, WU Hao, ZHOU Xiang
(1. Navy's Ccommunications Military Representative Office in Guangzhou, Guangzhou 510663, China;
2. China Electronics Technology Group Corporation No.7 Research Institute,
Guangzhou 510310, China)
[Abstract] In this paper, the development situation of the spectrum reasoning technology is introduced briefly, and the LSTM (Long Short-Term Memory) method for mutli-slot spectrum is proposed. This algorithm can be combined with the neural network algorithm and develop the time-frequency 2D spectrum reasoning method and space-time -frequency 3D spectrum reasoning method. It can be used to realize the spectrum reasoning prediction in the limited and discrete space-time-frequency multi-dimensional spectrum monitoring data, and provide support for the generation of battlefield electromagnetic spectrum situation and spectrum control.
[Key words] spectrum reasoning; neural network; space time frequency
1 引言
在現(xiàn)代化戰(zhàn)場條件下,作戰(zhàn)平臺或用頻系統(tǒng)并不一定全部裝備有專業(yè)的頻譜監(jiān)測設(shè)備,更多的是來源于作戰(zhàn)平臺或用頻系統(tǒng)自身的頻譜感知能力,因此,這些頻譜監(jiān)測數(shù)據(jù)在時域、空域、頻域等多個維度上都是非常稀疏的甚至是非常匱乏的。需要對有限的、不連續(xù)的時空頻多維分布式頻譜監(jiān)測進行數(shù)據(jù)匯集、融合,并對這些數(shù)據(jù)做頻譜推理預測,形成戰(zhàn)場復雜電磁環(huán)境的態(tài)勢信息,并形成可用頻譜資源的預測分析,從而為戰(zhàn)場頻譜管控提供依據(jù)。
頻譜推理技術(shù)是認知通信的重要基礎(chǔ),其能夠通過模式挖掘、機器學習等方法為裝備系統(tǒng)提供在未知區(qū)域、未來時間或陌生頻譜的信道占用情況,在很大程度上提高了復雜電磁環(huán)境下的裝備生存適應能力,其在現(xiàn)代化戰(zhàn)爭中的意義不容忽視。
頻譜推理是基于歷史已知頻譜數(shù)據(jù)來挖掘數(shù)據(jù)內(nèi)在的相關(guān)性或者規(guī)律性,以獲得將來未知無線頻譜的數(shù)據(jù)狀態(tài)[1]。頻譜推理也是一把雙刃劍,一方面它能夠通過歷史數(shù)據(jù)來預測信道未來某一段時間內(nèi)的信道狀態(tài),提供非授權(quán)用戶的吞吐量,能夠縮短感知時間在自適應頻譜感知中的能量消耗;另一方面,它也會不可避免地帶來預測虛警和預測漏檢[2-3]。
現(xiàn)有的頻譜推理技術(shù)主要關(guān)注于一維的時間維度,而頻率和空間維度上的推理技術(shù)則極少涉及,G?Ding等[4]驗證了頻譜狀態(tài)的可預測性。對于時間維度頻譜推理,隱馬爾可夫模型(Hidden Markov Model,HMM)推理法和神經(jīng)網(wǎng)絡(luò)(Neural Network,NN)方法具有較好的推理精度,然而關(guān)于這兩種方法的研究大多局限于下一時隙的占用情況推理,這與現(xiàn)實應用場景還有很大的差距。此外,隱馬爾科夫模型推理法[5]的推理準確度受限于所用轉(zhuǎn)換矩陣的階數(shù),越復雜的場景,模型所需的階數(shù)越高,其中隱含的狀態(tài)規(guī)律越難以描述,而且模型運算的復雜度會呈指數(shù)關(guān)系上升,因而,HMM模型并不適用于復雜的頻譜推理場景。相對而言,NN算法[6]能夠通過神經(jīng)元的作用模擬應用場景中存在的非線性轉(zhuǎn)化關(guān)系,并通過離線學習得到網(wǎng)絡(luò)中節(jié)點間的權(quán)重值,對于更復雜的電磁頻譜環(huán)境,可以增加神經(jīng)網(wǎng)絡(luò)的隱藏層數(shù)量[7]和各層的神經(jīng)元數(shù)量[8]等。因而,NN算法相對于HMM算法更適用于多維度復雜電磁頻譜推理場景。
鑒于頻譜在空間和頻率維度上的關(guān)聯(lián)特性,NN算法可分別用于一維空間和一維頻率維度頻譜推理。本研究結(jié)合NN算法的優(yōu)缺點,提出一種適用于時間維度多時隙頻譜的推理算法——LSTM(Long Short Term Memory)算法,并以此為基礎(chǔ),分別設(shè)計可用于時頻二維頻譜推理以及時空頻三維的頻譜推理方法,后者可以完全移植到網(wǎng)格結(jié)構(gòu)的應用場景中。目前,多維頻譜推理技術(shù)尚處于初步探索研究階段,還沒有形成較為完善的理論體系,也缺少實際應用場景驗證。
2 長短時記憶網(wǎng)絡(luò)(LSTM)推理法
相關(guān)研究證明,信道狀態(tài)具有高度的自相關(guān)特性,且伴隨著不同的時移,相關(guān)性呈現(xiàn)逐漸下降的趨勢。LSTM推理法在時間或者空間序列數(shù)據(jù)的處理上具備較大的優(yōu)勢[9]。LSTM網(wǎng)絡(luò)單元結(jié)構(gòu)如圖1所示:
圖1 LSTM網(wǎng)絡(luò)單元結(jié)構(gòu)
長短時記憶網(wǎng)絡(luò)LSTM克服了RNN(Recurrent Neural Networks)網(wǎng)絡(luò)訓練過程中無法快速收斂的缺點[10],其通過引入三個門單元(輸入門、遺忘門、輸出門)來合理地控制歷史與現(xiàn)在信息之間的關(guān)系,如圖1所示,LSTM主要涉及的公式如下:
it=σ(Wxixt+Whiht-1+Wcict-1+bi) (1)
ft=σ(Wxfxt+Whfht-1+Wcfct-1+bf) (2)
ct=ft⊙ct-1+it⊙tanh(Wxcixt+Whcht-1+bc) (3)
ot=σ(Wxoxt+Whoht-1+Wcoct+bo) (4)
ht=ot⊙tanh(ct) (5)
其中,σ為邏輯S型函數(shù),i、f、o、c為相應的輸入門、遺忘門、輸出門和記憶細胞激活向量,⊙表示向量間對應元素相乘,W(..)代表相應的各個權(quán)重矩陣,其中從細胞到各個門的矩陣為對角陣,而其余的各權(quán)重矩陣為非對角陣。
與一維時間序列頻譜推理相匹配的LSTM網(wǎng)絡(luò)結(jié)構(gòu)如圖2所示,基于LSTM網(wǎng)絡(luò)的頻譜推理方法可以靈活地調(diào)整推理網(wǎng)絡(luò)結(jié)構(gòu),進而可以在推理不同時隙長度的應用中進行切換。與此同時,該方法的另外一個優(yōu)勢是,普通的推理算法(HMM或NN等)只能夠?qū)蚕硇诺赖目捎眯耘c否(即0-1值)進行推理判定,而LSTM方法還可以對信道的能量水平進行推理,從而極大地增加了認知設(shè)備在接入信道過程中設(shè)計接入判定準則時的靈活性,進一步提升了接入信道的效率,并降低了認知設(shè)備的感知能量消耗水平。
圖2 一維時間序列推理LSTM網(wǎng)絡(luò)結(jié)構(gòu)示意圖
3 時頻二維頻譜推理法(2D混合網(wǎng)絡(luò))
基于多種網(wǎng)絡(luò)算法的結(jié)合算法能夠通過不同網(wǎng)絡(luò)的特長優(yōu)勢匹配而達到更為滿意的處理或推理效果,因此,混合神經(jīng)網(wǎng)絡(luò)在頻譜推理領(lǐng)域的應用前景巨大。多項研究分析表明,頻譜的使用情況在頻域上也存在很大的相關(guān)性,這里提出了一種LSTM網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)結(jié)合的適用于時頻二維頻譜推理的算法,算法中的網(wǎng)絡(luò)關(guān)系如圖3所示:
圖3 時頻二維頻譜推理網(wǎng)絡(luò)關(guān)系圖
該混合網(wǎng)絡(luò)主要基于時頻域頻譜所具有的相關(guān)性而構(gòu)建。LSTM通過遺忘門表達出歷史感知數(shù)據(jù)對未來推理數(shù)據(jù)的潛在影響關(guān)系。在無神經(jīng)網(wǎng)絡(luò)加入時,頻譜推理的過程實現(xiàn)多條并行的時間序列推理功能,且相互之間無關(guān)聯(lián),而在神經(jīng)網(wǎng)絡(luò)與LSTM網(wǎng)絡(luò)結(jié)合之后,混合網(wǎng)絡(luò)既能用于推理其中一條或多條未知信道的占用情況,也可以推理整個信道所占頻域的下一時隙(或多時隙)的使用情況。
用于時頻域頻譜推理的混合神經(jīng)網(wǎng)絡(luò)參數(shù)結(jié)構(gòu)如圖4所示,圖4只描述了時隙t時的頻譜推理過程,從圖4可以看出,不同信道的LSTM結(jié)構(gòu)是獨立的平行關(guān)系,在此基礎(chǔ)上,時隙t得出的各信道輸出被當做輸入值傳輸?shù)組LP推理器中,經(jīng)過該推理器處理后,得出下一時隙(t+1)或繼續(xù)輸入得到未來多個時隙的各信道占用情況。由于LSTM與神經(jīng)網(wǎng)絡(luò)相對明確的連接關(guān)系,在訓練過程中,混合網(wǎng)絡(luò)的后向傳播過程基本等價于原來二者訓練方式的加和,因而該混合網(wǎng)絡(luò)并沒有明顯增加訓練的復雜度,在一定的針對性訓練操作之后,各前向權(quán)重矩陣和偏差值收斂到穩(wěn)定值,繼而可以用于后續(xù)的二維頻譜推理過程。
圖4 時頻二維頻譜推理網(wǎng)絡(luò)參數(shù)關(guān)系示意圖
4 時空頻三維頻譜推理法(3D混合網(wǎng)絡(luò))
在LSTM算法和時頻頻譜推理算法的基礎(chǔ)上,提出一種適用于網(wǎng)格結(jié)構(gòu)的時空頻頻譜推理算法。在網(wǎng)格結(jié)構(gòu)的頻譜推理中,已知多個不同空間節(jié)點在時間和頻率維度上的頻譜感知信息,需運算推測出未知空間位置的頻譜占用情況(或功率水平),提出能夠滿足該需求的推理算法網(wǎng)絡(luò)結(jié)構(gòu)如圖5所示:
圖5 時空頻三維頻譜推理網(wǎng)絡(luò)示意圖
在該網(wǎng)絡(luò)結(jié)構(gòu)中,時間維度使用LSTM基礎(chǔ)網(wǎng)絡(luò),頻率和空間維度使用神經(jīng)網(wǎng)絡(luò)。其中,未知節(jié)點位于空間S,而(S-1)與(S+1)等空間節(jié)點的頻譜使用情況是已知信息,在網(wǎng)絡(luò)的訓練過程中,多個空間(不限于圖中給出的三個)的歷史信息作為輸入信息,而輸出可以根據(jù)實際需求進行調(diào)整,若僅需要空間S的未來頻譜使用情況,則可以僅以作為輸出。同時,各權(quán)重關(guān)系可以通過適當?shù)膭h減來匹配實際中的影響關(guān)系,同時降低權(quán)重反向迭代過程中具備的運算壓力。
在該3D神經(jīng)網(wǎng)絡(luò)中,傳統(tǒng)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)可以進行適當?shù)母倪M或者直接被替換成推理效果更好的卷積神經(jīng)網(wǎng)絡(luò)(CNN,Convolutional Neural Networks)等結(jié)構(gòu)?梢钥闯,該3D神經(jīng)網(wǎng)絡(luò)結(jié)合了空間頻譜的相對關(guān)系,能夠通過調(diào)整網(wǎng)絡(luò)中的連接關(guān)系以適用于時空頻多維頻譜數(shù)據(jù)。具體來說,該立體結(jié)構(gòu)混合神經(jīng)網(wǎng)絡(luò)能夠推理點(信道時隙點)、線(單信道或單一時隙或不同空間時隙點)、面(多信道時隙或多信道空間或多時隙空間)、體(信道時隙空間)結(jié)構(gòu)的頻譜占用情況。
5 頻譜推理技術(shù)比較
已有頻譜推理算法與當前提出的各頻譜推理算法的參數(shù)與性能對比如表1所示:
傳統(tǒng)的隱馬爾可夫模型算法不適用于復雜場景;神經(jīng)網(wǎng)絡(luò)算法可適用于復雜場景,但訓練較慢;長短時記憶網(wǎng)絡(luò)推理法適用于復雜場景下的序列關(guān)系,且訓練較快;時頻二維頻譜推理法適用于二維關(guān)系場景,訓練速度可通過與基因算法結(jié)合來改進;時空頻三維頻譜推理法適用于三維關(guān)系場景,訓練速度可通過與基因算法結(jié)合來改進,網(wǎng)絡(luò)結(jié)構(gòu)也可進一步優(yōu)化。
6 結(jié)束語
本文提出的適用于時間維度多時隙頻譜的推理、時頻二維頻譜推理以及時空頻三維的頻譜推理方法能夠在有限的、不連續(xù)的時空頻多維頻譜監(jiān)測數(shù)據(jù)情況下實現(xiàn)頻譜推理預測,從而為戰(zhàn)場頻譜管控提供支撐。該研究目前處于仿真試驗階段,其有效性尚待驗證。
參考文獻:
[1] XING X, JING T, CHENG W, et al. Spectrum prediction in cognitive radio networks[J]. IEEE Wireless Communications, 2013,20(2): 90-96.
[2] 張靜,徐以濤,丁國如,等. 基于信道質(zhì)量分析的動態(tài)頻譜接入研究[J]. 通信技術(shù), 2016,49(9): 1181-1185.
[3] 楊健,趙杭生. 不完美頻譜預測對認知無線網(wǎng)絡(luò)吞吐率的提升[J]. 軍事通信技術(shù), 2015,36(1): 35-40.
[4] DING G, WANG J, WU Q, et al. On the limits of predictability in real-world radio spectrum state dynamics: from entropy theory to 5G spectrum sharing[J]. IEEE Communications Magazine, 2015,53(7): 178-183.
[5] Ning G, Nintanavongsa P. Time Prediction based Spectrum Usage Detection in Centralized Cognitive Radio Networks[C]//IEEE WCNC, 2011: 300-305.
[6] Tumuluru V K, Wang P, Niyato D. A Neural Network based Spectrum Prediction Scheme for Cognitive Radio[C]//IEEE Commun, 2010: 1-5.
[7] Wen Z. Autoredressive Spectrum Hole Prediction Adaptive for Cognitive Radio Systems[C]//IEEE ICCWksps, 2008: 154-157.
[8] Chen Z, Guo N, Hu Z, et al. Experimental Verification of Channel State Prediction Considering Delays in Practical Cognitive Radio[J]. IEEE Transactions on Vehicular Technology, 2011,60(4): 1314-1325.
[9] 胡新辰. 基于LSTM的語義關(guān)系分類研究[M]. 哈爾濱: 哈爾濱工業(yè)大學, 2015.
[10] 張亮,黃曙光,石昭祥,等. 基于LSTM型RNN的CAPTCHA識別方法[J]. 模式識別與人工智能, 2011,24(1): 40-47.★
作者:周佳宇 吳皓 周祥 來源:《移動通信》2018年2月