本文討論利用帶嵌入式SERDES收發(fā)器和CPRI鏈路IP內(nèi)核的低成本FPGA,來實(shí)現(xiàn)電信系統(tǒng)低延遲變化設(shè)計(jì)的考慮因素。
無線電信設(shè)備制造商正受到以更小體積、更低功耗、更低制造成本來布署基站架構(gòu)的壓力。當(dāng)通過WiMax和LTE網(wǎng)絡(luò)開展新業(yè)務(wù)的同服務(wù)時,他們還面臨提高覆蓋范圍、帶寬和可擴(kuò)展性的壓力。解決這些應(yīng)用挑戰(zhàn)的關(guān)鍵策略是從基站中分離出RF接收器和功率放大器,并緊靠它們各自的天線重新設(shè)計(jì),從而使簡化后的基站直接驅(qū)動天線。本文討論利用帶嵌入式SERDES收發(fā)器和CPRI鏈路IP內(nèi)核的低成本FPGA,來實(shí)現(xiàn)電信系統(tǒng)低延遲變化設(shè)計(jì)的考慮因素。
實(shí)現(xiàn)這種系統(tǒng)的一個解決方法是利用通用公共無線接口(CPRI),通過光纖傳送數(shù)字基帶數(shù)據(jù)到遠(yuǎn)程無線頭(RRH)。根據(jù)CPRI規(guī)范,基站用作無線設(shè)備控制器(REC),而RRH用作無線設(shè)備(RE)。在此方案中,所有的RE在指定的時間必須同步和傳輸,這樣,待解決的器件和系統(tǒng)級關(guān)鍵問題是如何使各種天線之間的傳輸時間變化最小。本文討論利用帶嵌入式SERDES收發(fā)器和CPRI鏈路IP內(nèi)核的低成本FPGA,來實(shí)現(xiàn)電信系統(tǒng)低延遲變化設(shè)計(jì)的考慮因素。
RRH的部署
從駐點(diǎn)(hotel)基站分離無線頻率(RF)收發(fā)器和功率放大器的優(yōu)點(diǎn)很多,如圖1所示。但最吸引人的優(yōu)勢體現(xiàn)在功耗、部署的靈活性、更小的固定面積,以及更低的CAPEX(固定投資)和OPEX(運(yùn)營費(fèi)用)方面。
由于無線頭從主基帶模塊里分離出來,所以必須確保系統(tǒng)能校準(zhǔn)無線頭和hotel BTS之間的所有延時,以便能遵從傳輸時間規(guī)范(即最大可接受的周期內(nèi)對齊)。由于采用分集傳輸,公共數(shù)據(jù)經(jīng)由不同的RE傳送,這意味著發(fā)送對齊誤差在各種RE之間是可知且可控,以取保正確運(yùn)行。
通常,通過基于FPGA的CPRI鏈接的回路延遲取決于其發(fā)送路徑(包括串行器、物理編碼子層,橋接FIFO和FPGA結(jié)構(gòu)),和返回時的接收路徑(類似于發(fā)送路徑,不過是反向的)。圖2給出了一個例子。此外,這個延時需要再加上傳輸媒質(zhì)(最常用的是光纖)導(dǎo)致的延時。
因?yàn)椴僮鲉T將延時信息用于系統(tǒng)校準(zhǔn),比如為了使信號強(qiáng)度最大和改進(jìn)跟蹤需要確定不同系統(tǒng)的地理位置,這必須確保通過整個來回路徑的延時變化在系統(tǒng)正常工作期間以及各種上電方案和情況時隨工藝、電壓和溫度變化最小。因?yàn)閺拿總RRH跳的變化是累加的,這個需求通過級聯(lián)RRH被放大,在延時變化規(guī)范方面導(dǎo)致甚至更小的容忍度。
CPRI規(guī)范對此特別關(guān)注,針對CPRI收發(fā)器的單向和來回行程延時,在3.5.3(R-19和R-20)條款做了清楚的說明。對于3GPP和WiMAX,這個規(guī)范為一跳的延時精確性是±16.276ns(來回行程,不包括傳輸媒質(zhì)),每增加一跳,減少這個數(shù)目(即2跳是±16.276除2,或者±8.138ns等)。
針對低延遲變化的FPGA實(shí)現(xiàn)
圖2給出了傳統(tǒng)SERDES/PCS實(shí)現(xiàn)中的主要功能塊,黃色部分是導(dǎo)致延時變化的主要功能塊。
圖2:傳統(tǒng)的CPRI接收器實(shí)現(xiàn)方案。
導(dǎo)致延時變化的模塊有好幾個,包括模擬SERDES、數(shù)字PCS邏輯以及實(shí)際的軟IP。模擬SERDES有相對緊湊的時序,百萬分之一秒的變化主要源于工藝、電壓和溫度的變化。因此對延時變化預(yù)算沒有很大的影響。
然而,字對齊和橋接FIFO是引起延時變化很大的兩個主要原因。如圖3所示,字對齊功能會導(dǎo)致多達(dá)9位周期的延時變化,這取決于10位周期內(nèi)字對齊指針的初始位置。如果10位的采樣窗口能很好地捕獲對齊字符(如圖3a所示),那就沒有延時。如果采樣窗口沒有與字符對齊,則將導(dǎo)致多達(dá)9位周期的延時(如圖3b所示)。對于工作頻率為2.488Gbps(400ps周期)的CPRI鏈路,這意味最壞延遲變化為±1.8ns。
圖3:字對齊導(dǎo)致的延時變化。
采用基于SERDES的FPGA混合結(jié)構(gòu),還需要橋接FIFO來支持從高速PCS時鐘到FPGA時鐘域的轉(zhuǎn)換。通過設(shè)計(jì),這個FIFO可導(dǎo)致多達(dá)2個并行時鐘周期的延時變化。在2.488Gbps的線速下,PCS并行時鐘以該速率的十分之一運(yùn)行,時鐘周期大約為4ns。因此,F(xiàn)IFO(Tx&Rx)的每個方向上都有±8ns的最大延遲變化,這導(dǎo)致一共±16ns的延遲變化。