光時(shí)域反射儀——測(cè)量光纖傳輸特性的好幫手
光纖通信是本世紀(jì)70年代發(fā)展起來(lái)的,由于其具有傳輸頻帶寬、損耗小等特性,發(fā)展
迅猛。自1976年美國(guó)投入第一個(gè)商用光纖通信系統(tǒng)以后,許多國(guó)家都相繼研制成功的陪同
用光纖通信系統(tǒng)。我國(guó)于90年代初期開(kāi)始大規(guī)模建設(shè)商用光纖通信系統(tǒng)。
現(xiàn)在,電信光纜傳輸網(wǎng)已成為承載著巨大信息量的信息高速公路。因此,保證其安全、
暢通是非常重要的。這樣就要求有一種能夠準(zhǔn)確地測(cè)量光纖傳輸特性的儀器、儀表,以便
能夠有時(shí)了解光纖的傳輸情況,發(fā)現(xiàn)光纖障礙及障礙隱患。光時(shí)域反射儀(OTDR)正是一
種這樣的光學(xué)儀表,它根據(jù)光的后向散射與菲涅耳反向原理制作,利用光在光纖中傳播時(shí)
產(chǎn)生的后向散射光來(lái)獲取衰減的信息,可用于測(cè)量光纖衰減、接頭損耗、光纖故障點(diǎn)定位
以及了解光纖沿長(zhǎng)度的損耗分布情況等,是光纜施工、維護(hù)及監(jiān)測(cè)中必不可少的工具。
OTDR動(dòng)態(tài)范圍的大小對(duì)測(cè)量精度的影響
初始背向散射電平與噪聲低電平的DB差值被定義為OTDR的動(dòng)態(tài)范圍。其中,背向散射
電平初始點(diǎn)是入射光信號(hào)的電平值,而噪聲低電平為背向散射信號(hào)為不可見(jiàn)信號(hào)。動(dòng)態(tài)范
圍的大小決定OTDR可測(cè)光纖的距離。當(dāng)背向散射信號(hào)的電平低于OTDR噪聲時(shí),它就成為不
可見(jiàn)信號(hào)。
隨著光纖熔接技術(shù)的發(fā)展,人們可以將光纖接頭的損耗控制在0.1DB以下,為實(shí)現(xiàn)對(duì)整
條光纖的所有小損耗的光纖接頭進(jìn)行有效觀測(cè),人們需要大動(dòng)態(tài)范圍的OTDR。增大OTDR 動(dòng)
態(tài)范圍主要有兩個(gè)途徑:增加初始背向散射電平和降低噪聲低電平。影響初始背向散射電
平的因素是光的脈沖寬度。影響噪聲低電平的因素是掃描平均時(shí)間。
多數(shù)的型號(hào)OTDR允許用戶選擇注入被測(cè)光纖的光脈沖寬度參數(shù)。在幅度相同的情況下,
較寬脈沖會(huì)產(chǎn)生較大的反射信號(hào),即產(chǎn)生較高的背向散射電平,也就是說(shuō),光脈沖寬度越
大,OTDR的動(dòng)態(tài)范圍越大。
OTDR向被測(cè)的光纖反復(fù)發(fā)送脈沖,并將每次掃描的曲線平均得到結(jié)果曲線,這樣,接
收器的隨機(jī)噪聲就會(huì)隨著平均時(shí)間的加長(zhǎng)而得到抑制。在OTDR的顯示曲線上體現(xiàn)為噪聲電
平隨平均時(shí)間的增長(zhǎng)而下降,于是,動(dòng)態(tài)范圍會(huì)隨平均時(shí)間的增大而加大。在最初的平均
時(shí)間內(nèi),動(dòng)態(tài)范圍性能的改善顯著,在接下來(lái)的平均時(shí)間內(nèi),動(dòng)態(tài)范圍性能的改善顯著,
在接下來(lái)的平均時(shí)間內(nèi),動(dòng)態(tài)范圍性能的改善會(huì)逐漸變緩,也就是說(shuō),平均時(shí)間越長(zhǎng),OT
DR的動(dòng)態(tài)范圍就越大。
盲區(qū)對(duì)OTDR測(cè)量精度的影響
我們將諸如活動(dòng)連接器、機(jī)械接頭等特征點(diǎn)產(chǎn)生反射引起的OTDR接收端飽和而帶來(lái)的
一系列“盲點(diǎn)”稱為盲區(qū)。光纖中的盲區(qū)分為事件盲區(qū)和衰減盲區(qū)兩種:由于介入活動(dòng)連
接器而引起反射峰,從反射峰的起始點(diǎn)到接收器飽和峰值之間的長(zhǎng)度距離,被稱為事件盲
區(qū);光纖中由于介入活動(dòng)連接器引起反射峰,從反射峰的起始點(diǎn)到可識(shí)別其他事件點(diǎn)之間
的距離,被稱為衰減盲區(qū)。對(duì)于OTDR來(lái)說(shuō),盲區(qū)越小越好。
盲區(qū)會(huì)隨著脈沖寬的寬度的增加而增大,增加脈沖寬度雖然增加了測(cè)量長(zhǎng)度,但也增
大了測(cè)量盲區(qū),所以,我們?cè)跍y(cè)試光纖時(shí),對(duì)OTDR附件的光纖和相鄰事件點(diǎn)的測(cè)量要使用
窄脈沖,而對(duì)光纖遠(yuǎn)端進(jìn)行測(cè)量時(shí)要使用寬脈沖。
OTDR的“增益”現(xiàn)象
由于光纖接頭是無(wú)源器件,所以,它只能引起損耗而不能引起“增益”。OTDR通過(guò)比
較接頭前后背向散射電平的測(cè)量值來(lái)對(duì)接頭的損耗進(jìn)行測(cè)量。如果接頭后光纖的散射系數(shù)
較高,接頭后面的背向散射電平就可能大于接頭前的散射電平,抵消了接頭的損耗,從而
引起所謂的“增益”。在這種情況下,獲得準(zhǔn)確接頭損耗的唯一方法是:用OTDR從被測(cè)光
纖的兩端分別對(duì)該接頭進(jìn)行測(cè)試,并將兩次測(cè)量結(jié)果取平均值。這就是分別對(duì)該接頭進(jìn)行
測(cè)試,并將兩次測(cè)量結(jié)果取平均值。這就是雙向平均測(cè)試法,是目前光纖特性測(cè)試中必須
使用的方法。
OTDR能否測(cè)量不同類型的光纖
如果使用單模OTDR模塊對(duì)多模光纖進(jìn)行測(cè)量,或使用一個(gè)多模OTDR模塊對(duì)諸如芯徑為
62.5mm的單模光纖進(jìn)行測(cè)量,光纖長(zhǎng)度的測(cè)量結(jié)果不會(huì)受到影響,但諸如光纖損耗、光接
頭損耗、回波損耗的結(jié)果卻都是不正確的。這是因?yàn)椋鈴男⌒緩焦饫w入射到大芯徑光纖
時(shí),大芯徑不能被入射光完全充滿,于是在損耗測(cè)量上引起誤差,所以,在測(cè)量光纖時(shí),
一定要選擇與被測(cè)光纖相匹配的OTDR進(jìn)行測(cè)量,這樣才能得到各項(xiàng)性能指標(biāo)均正確的結(jié)果。
摘自《黑龍江郵電報(bào)》