挑戰(zhàn):
運用現(xiàn)代數(shù)字計算的最新進展,開發(fā)下一代高性能、小型集成射電航天接收機,盡可能與天線輸入接近地對信號進行數(shù)字化盡可能與天線饋電接近地對信號進行數(shù)字化。
解決方案:
使用NI采樣、數(shù)據(jù)采集(DAQ)和數(shù)據(jù)流盤硬件,采集定制設計的微波前端的輸出,并測試數(shù)字標定邊帶分離和高精度、高穩(wěn)定性極化隔離的新算法。
"使用NI數(shù)據(jù)采集和數(shù)據(jù)流盤硬件,我們?yōu)镈SSM和DOMT開發(fā)了標定和校正算法,相比使用實時硬件信號處理實際問題,我們的處理方法更有效、成本更低。"
美國國家射電天文臺(NRAO)是美國國家科學基金會(NSF)資助的機構,負責美國和世界各地天文學家使用的射電天文設備的建造、維護和運作。中央開發(fā)實驗室(CDL)是NRAO的主要研究和開發(fā)團隊。
突破性的射電天文研究依賴于低噪聲接收器和寬帶數(shù)據(jù)傳輸系統(tǒng)。盡管這些系統(tǒng)在成本、重量和尺寸上都更小,但是比目前的高端系統(tǒng)更可靠、可重復性更高,而且無需犧牲靈敏度。
數(shù)字邊帶分離和極性隔離
下一代射電儀器需要盡可能接近地對天線饋電進行數(shù)字化,并且將射頻至基帶轉換、模擬至數(shù)字轉換以及銅導線至光纖轉換集成在一體。這包含將部分功能從模擬域轉換到數(shù)字域,從而可以以最高的保真度進行信號處理。
自然決定了射電天文學家研究信號的頻率、帶寬和時域特性,需要比大多數(shù)商業(yè)應用具有更寬微調范圍和更大瞬時帶寬的接收機。此外,從通信標準而言,宇宙信號非常微弱,因此分離帶外信號十分重要。直到最近,出現(xiàn)了復雜的下變頻系統(tǒng),它帶有多個本地振蕩器和中間濾波器,讓低級散射混和產(chǎn)品分解頻譜,特別是在高度集成的接收器上。更簡單的單一下變頻、邊帶分離解決方案都不可行,因為為中頻(IF)實現(xiàn)高帶寬混和耦合器十分困難,相對受限制的邊帶分離導致低于20 dB寬帶寬。為了避免這個問題,我們使用數(shù)字邊帶分離混和器(DSSM)避免模擬IF混和系統(tǒng)。DSSM對相內(nèi)進行數(shù)字化并獨立對混和器輸出進行正交化,數(shù)字化地完成更高或更低帶寬的最終重建,因此我們可以創(chuàng)建數(shù)學上完美的IF混和系統(tǒng),校正在前置模擬數(shù)字中的任何幅值和相位失衡。
另外,對于射電天文學而言,比較獨特的是需要測量隨機極化信號的部分極化,通常極化低于1%。在傳統(tǒng)系統(tǒng)中,成為直接式收發(fā)轉換器(OMT)的被動電磁設備插入在天線和第一個低噪聲放大器之間,將信號的正交部分分解為兩個獨立輸出。盡管這些設備的性能很好,但它們比較笨重,難以封裝,降低了效率,限制了它們在高集成緊湊接收器中的使用。數(shù)字正交模轉換器(DOMT)和DSSM一樣避免了這個問題。
使用基于NI PXI的數(shù)據(jù)采集和流盤技術的算法開發(fā)
最后,將邊帶和極化重建所需的信號處理算法編程到現(xiàn)場可編程門陣列(FPGA)固件中,實現(xiàn)實時運行。但是,標定和處理算法需要更廣的開發(fā)和測試。因此,我們需要足夠靈活的系統(tǒng),對多個接收器概念進行原型開發(fā),并使用不同算法重復比較相同數(shù)據(jù)的后期處理,同時仍然對八個通道高速同步采集大量數(shù)據(jù)。NI HDD-8263與PXI數(shù)據(jù)采集模塊結合在一起可以滿足這些需求。
對DSSM的初始測試,我們使用工作在500 MS/s的NI PXI-5152雙通道采樣器,采集相內(nèi)和1250到1650 MHz前端的正交輸出。我們使用帶有1 TB存儲容量的NI HDD-8263 RAID流盤系統(tǒng),對數(shù)據(jù)進行緩存和存儲。最大128 MB緩存以128 ms突發(fā)記錄數(shù)據(jù)。這為數(shù)字校正系數(shù)標定和超過60 dB的邊帶分離測量提供了足夠的信噪比。
帶有四個DSSM接收機的8到12 GHz DOMT的后續(xù)測試使用相同的NI HDD-8263系統(tǒng)存儲數(shù)據(jù)。在設置中,我們使用工作在60 MS/s的NI PXIe-8105八通道采樣器。每個通道從模擬硬件的四個極化向量采集相內(nèi)或正交相位成分。在這個例子中,以1.08 s突發(fā)記錄數(shù)據(jù)。
通過將數(shù)據(jù)用流盤技術傳送到磁盤,用軟件對結果進行后期處理,我們在完成復雜昂貴的FPGA實現(xiàn)之前,對算法進行微調以得到最佳性能。
結果
我們使用NI數(shù)據(jù)采集和數(shù)據(jù)流盤硬件,相比使用實時硬件信號處理實現(xiàn)而言,我們更有效、成本更低地為DSSM和DOMT開發(fā)標定和校正算法。我們開發(fā)的算法和校正參數(shù)十分強大、精確并且在不同溫度下穩(wěn)定。DSSM原型系統(tǒng)在單一標定之后實現(xiàn)了在12 °C溫度變換范圍內(nèi)高于50 dB邊帶隔離,同時一次采集整個L頻帶(1250至1650 MHz)。兩個DOMT原型系統(tǒng)、三探頭和四探頭版本實現(xiàn)了在10 °C溫度范圍內(nèi),一次標定實現(xiàn)高于50 dB的極化隔離,同時采集9 GHz附近的60 MHz寬帶。
有了這些結果,我們有信心在更大帶寬下用FPGA硬件實現(xiàn)實時算法。