光纖的種類(lèi)很多,分類(lèi)方法也是各種各樣的。
從材料角度分
按照制造光纖所用的材料分類(lèi),有石英系光纖、多組分玻璃光纖、塑料包層石英芯光纖、全塑料光纖和氟化物光纖等。
塑料光纖是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有機(jī)玻璃)制成的。它的特點(diǎn)是制造成本低廉,相對(duì)來(lái)說(shuō)芯徑較大,與光源的耦合效率高,耦合進(jìn)光纖的光功率大,使用方便。但由于損耗較大,帶寬較小,這種光纖只適用于短距離低速率通信,如短距離計(jì)算機(jī)網(wǎng)鏈路、船舶內(nèi)通信等。目前通信中普遍使用的是石英系光纖。
按傳輸模式分
按光在光纖中的傳輸模式可分為:?jiǎn)文9饫w和多模光纖。
多模光纖的纖芯直徑為50~62.5μm,包層外直徑125μm,單模光纖的纖芯直徑為8.3μm,包層外直徑125μm。光纖的工作波長(zhǎng)有短波長(zhǎng)0.85μm、長(zhǎng)波長(zhǎng)1.31μm和1.55μm。光纖損耗一般是隨波長(zhǎng)加長(zhǎng)而減小,0.85μm的損耗為2.5dB/km,1.31μm的損耗為0.35dB/km,1.55μm的損耗為0.20dB/km,這是光纖的最低損耗,波長(zhǎng)1.65μm以上的損耗趨向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范圍內(nèi)都有損耗高峰,這兩個(gè)范圍未能充分利用。80年代起,傾向于多用單模光纖,而且先用長(zhǎng)波長(zhǎng)1.31μm。
多模光纖
多模光纖(Multi Mode Fiber):中心玻璃芯較粗(50或62.5μm),可傳多種模式的光。但其模間色散較大,這就限制了傳輸數(shù)字信號(hào)的頻率,而且隨距離的增加會(huì)更加嚴(yán)重。例如:600MB/KM的光纖在2KM時(shí)則只有300MB的帶寬了。因此,多模光纖傳輸?shù)木嚯x就比較近,一般只有幾公里。
單模光纖
單模光纖(Single Mode Fiber):中心玻璃芯很細(xì)(芯徑一般為9或10μm),只能傳一種模式的光。因此,其模間色散很小,適用于遠(yuǎn)程通訊,但還存在著材料色散和波導(dǎo)色散,這樣單模光纖對(duì)光源的譜寬和穩(wěn)定性有較高的要求,即譜寬要窄,穩(wěn)定性要好。后來(lái)又發(fā)現(xiàn)在1.31μm波長(zhǎng)處,單模光纖的材料色散和波導(dǎo)色散一為正、一為負(fù),大小也正好相等。這就是說(shuō)在1.31μm波長(zhǎng)處,單模光纖的總色散為零。從光纖的損耗特性來(lái)看,1.31μm處正好是光纖的一個(gè)低損耗窗口。這樣,1.31μm波長(zhǎng)區(qū)就成了光纖通信的一個(gè)很理想的工作窗口,也是現(xiàn)在實(shí)用光纖通信系統(tǒng)的主要工作波段。1.31μm常規(guī)單模光纖的主要參數(shù)是由國(guó)際電信聯(lián)盟ITU-T在G652建議中確定的,因此這種光纖又稱(chēng)G652光纖。
最佳傳輸窗口為依據(jù)
按最佳傳輸頻率窗口分:常規(guī)型單模光纖和色散位移型單模光纖。
常規(guī)型:光纖生產(chǎn)長(zhǎng)家將光纖傳輸頻率最佳化在單一波長(zhǎng)的光上,如1300μm。
色散位移型:光纖生產(chǎn)廠(chǎng)家將光纖傳輸頻率最佳化在兩個(gè)波長(zhǎng)的光上,如:1300μm和1550μm。
我們知道單模光纖沒(méi)有模式色散所以具有很高的帶寬,那么如果讓單模光纖工作在1.55μm波長(zhǎng)區(qū),不就可以實(shí)現(xiàn)高帶寬、低損耗傳輸了嗎?但是實(shí)際上并不是這么簡(jiǎn)單。常規(guī)單模光纖在1.31μm處的色散比在1.55μm處色散小得多。這種光纖如工作在1.55μm波長(zhǎng)區(qū),雖然損耗較低,但由于色散較大,仍會(huì)給高速光通信系統(tǒng)造成嚴(yán)重影響。因此,這種光纖仍然不是理想的傳輸媒介。
為了使光纖較好地工作在1.55μm處,人們?cè)O(shè)計(jì)出一種新的光纖,叫做色散位移光纖(DSF)。這種光纖可以對(duì)色散進(jìn)行補(bǔ)償,使光纖的零色散點(diǎn)從1.31μm處移到1.55μm附近。這種光纖又稱(chēng)為1.55μm零色散單模光纖,代號(hào)為G653。
G653光纖是單信道、超高速傳輸?shù)臉O好的傳輸媒介,F(xiàn)在這種光纖已用于通信干線(xiàn)網(wǎng),特別是用于海纜通信類(lèi)的超高速率、長(zhǎng)中繼距離的光纖通信系統(tǒng)中。
色散位移光纖雖然用于單信道、超高速傳輸是很理想的傳輸媒介,但當(dāng)它用于波分復(fù)用多信道傳輸時(shí),又會(huì)由于光纖的非線(xiàn)性效應(yīng)而對(duì)傳輸?shù)男盘?hào)產(chǎn)生干擾。特別是在色散為零的波長(zhǎng)附近,干擾尤為嚴(yán)重。為此,人們又研制了一種非零色散位移光纖即G655光纖,將光纖的零色散點(diǎn)移到1.55μm 工作區(qū)以外的1.60μm以后或在1.53μm以前,但在1.55μm波長(zhǎng)區(qū)內(nèi)仍保持很低的色散。這種非零色散位移光纖不僅可用于現(xiàn)在的單信道、超高速傳輸,而且還可適應(yīng)于將來(lái)用波分復(fù)用來(lái)擴(kuò)容,是一種既滿(mǎn)足當(dāng)前需要,又兼顧將來(lái)發(fā)展的理想傳輸媒介。
還有一種單模光纖是色散平坦型單模光纖。這種光纖在1.31μm到1.55μm整個(gè)波段上的色散都很平坦,接近于零。但是這種光纖的損耗難以降低,體現(xiàn)不出色散降低帶來(lái)的優(yōu)點(diǎn),所以目前尚未進(jìn)入實(shí)用化階段。
按折射率分布分
按折射率分布情況分:階躍型和漸變型光纖。
階躍型:光纖的纖芯折射率高于包層折射率,使得輸入的光能在纖芯一包層交界面上不斷產(chǎn)生全反射而前進(jìn)。這種光纖纖芯的折射率是均勻的,包層的折射率稍低一些。光纖中心芯到玻璃包層的折射率是突變的,只有一個(gè)臺(tái)階,所以稱(chēng)為階躍型折射率多模光纖,簡(jiǎn)稱(chēng)階躍光纖,也稱(chēng)突變光纖。這種光纖的傳輸模式很多,各種模式的傳輸路徑不一樣,經(jīng)傳輸后到達(dá)終點(diǎn)的時(shí)間也不相同,因而產(chǎn)生時(shí)延差,使光脈沖受到展寬。所以這種光纖的模間色散高,傳輸頻帶不寬,傳輸速率不能太高,用于通信不夠理想,只適用于短途低速通訊,比如:工控。但單模光纖由于模間色散很小,所以單模光纖都采用突變型。這是研究開(kāi)發(fā)較早的一種光纖,現(xiàn)在已逐漸被淘汰了。
為了解決階躍光纖存在的弊端,人們又研制、開(kāi)發(fā)了漸變折射率多模光纖,簡(jiǎn)稱(chēng)漸變光纖。
漸變型光纖:光纖中心芯到玻璃包層的折射率是逐漸變小,可使高次模的光按正弦形式傳播,這能減少模間色散,提高光纖帶寬,增加傳輸距離,但成本較高,現(xiàn)在的多模光纖多為漸變型光纖。漸變光纖的包層折射率分布與階躍光纖一樣,為均勻的。漸變光纖的纖芯折射率中心最大,沿纖芯半徑方向逐漸減小。由于高次模和低次模的光線(xiàn)分別在不同的折射率層界面上按折射定律產(chǎn)生折射,進(jìn)入低折射率層中去,因此,光的行進(jìn)方向與光纖軸方向所形成的角度將逐漸變小。同樣的過(guò)程不斷發(fā)生,直至光在某一折射率層產(chǎn)生全反射,使光改變方向,朝中心較高的折射率層行進(jìn)。這時(shí),光的行進(jìn)方向與光纖軸方向所構(gòu)成的角度,在各折射率層中每折射一次,其值就增大一次,最后達(dá)到中心折射率最大的地方。在這以后。和上述完全相同的過(guò)程不斷重復(fù)進(jìn)行,由此實(shí)現(xiàn)了光波的傳輸?梢钥闯觯庠跐u變光纖中會(huì)自覺(jué)地進(jìn)行調(diào)整,從而最終到達(dá)目的地,這叫做自聚焦。
按工作波長(zhǎng)分
按光纖的工作波長(zhǎng)分類(lèi),有短波長(zhǎng)光纖、長(zhǎng)波長(zhǎng)光纖和超長(zhǎng)波長(zhǎng)光纖。
常用光纖規(guī)格
單模:8/125μm,9/125μm, 10/125μm
多模:50/125μm歐洲標(biāo)準(zhǔn)62.5/125μm美國(guó)標(biāo)準(zhǔn)
工業(yè),醫(yī)療和低速網(wǎng)絡(luò):100/140μm,200/230μm
塑料光纖:98/1000μm用于汽車(chē)控制。
光纖制造
目前通信中所用的光纖一般是石英光纖。石英的化學(xué)名稱(chēng)叫二氧化硅(SiO2),它和我們?nèi)粘S脕?lái)建房子所用的砂子的主要成分是相同的。但是普通的石英材料制成的光纖是不能用于通信的。通信光纖必須由純度極高的材料組成;不過(guò),在主體材料里摻入微量的摻雜劑,可以使纖芯和包層的折射率略有不同,這是有利于通信的。
制造光纖的方法很多,目前主要有:管內(nèi)CVD(化學(xué)汽相沉積)法,棒內(nèi)CVD法,PCVD(等離子體化學(xué)汽相沉積)法和VAD(軸向汽相沉積)法。但不論用哪一種方法,都要先在高溫下做成預(yù)制棒,然后在高溫爐中加溫軟化,拉成長(zhǎng)絲,再進(jìn)行涂覆、套塑,成為光纖芯線(xiàn)。光纖的制造要求每道工序都要相當(dāng)精密,由計(jì)算機(jī)控制。在制造光纖的過(guò)程中,要注意:
①光纖原材料的純度必須很高。
②必須防止雜質(zhì)污染,以及氣泡混入光纖。
③要正確控制折射率的分布;
④正確控制光纖的結(jié)構(gòu)尺寸;
⑤盡量減小光纖表面的傷痕損害,提高光纖機(jī)械強(qiáng)度。
光纜的優(yōu)點(diǎn)
光導(dǎo)纖維是一種傳輸光束的細(xì)微而柔韌的媒質(zhì)。光導(dǎo)纖維電纜由一捆光纖組成,簡(jiǎn)稱(chēng)為光纜。光纜是數(shù)據(jù)傳輸中最有效的一種傳輸介質(zhì),它的優(yōu)點(diǎn)和光纖的優(yōu)點(diǎn)類(lèi)似,主要有以下幾個(gè)方面:
(1)頻帶較寬。
(2)電磁絕緣性能好。光纖電纜中傳輸?shù)氖枪馐,由于光束不受外界電磁干擾與影響,而且本身也不向外輻射信號(hào),因此它適用于長(zhǎng)距離的信息傳輸以及要求高度安全的場(chǎng)合。當(dāng)然,抽頭困難是它固有的難題,因?yàn)楦铋_(kāi)的光纜需要再生和重發(fā)信號(hào)。
(3)衰減較小。可以說(shuō)在較長(zhǎng)距離和范圍內(nèi)信號(hào)是一個(gè)常數(shù)。
(4)中繼器的間隔較大,因此可以減少整個(gè)通道中繼器的數(shù)目,可降低成本。根據(jù)貝爾實(shí)驗(yàn)室的測(cè)試,當(dāng)數(shù)據(jù)的傳輸速率為420Mbps且距離為119公里無(wú)中繼器時(shí),其誤碼率為,傳輸質(zhì)量很好。而同軸電纜和雙絞線(xiàn)每隔幾千米就需要接一個(gè)中繼器。
如何安裝
在使用光纜互聯(lián)多個(gè)小型機(jī)的應(yīng)用中,必須考慮光纖的單向特性,如果要進(jìn)行雙向通信,那么就應(yīng)使用雙股光纖。由于要對(duì)不同頻率的光進(jìn)行多路傳輸和多路選擇,因此在通信器件市場(chǎng)上又出現(xiàn)了光學(xué)多路轉(zhuǎn)換器。
在普通計(jì)算機(jī)網(wǎng)絡(luò)中安裝光纜是從用戶(hù)設(shè)備開(kāi)始的。因?yàn)楣饫|只能單向傳輸。為了實(shí)現(xiàn)雙向通信,光纜就必需成對(duì)出現(xiàn),一個(gè)用于輸入,一個(gè)用于輸出。光纜兩端接光學(xué)接口器。
安裝光纜需格外謹(jǐn)慎。連接每條光纜時(shí)都要磨光端頭,通過(guò)電燒烤或化學(xué)環(huán)氯工藝與光學(xué)接口連在一起,確保光通道不被阻塞。光纖不能拉得太緊,也不能形成直角。
常用光纜
光纖的類(lèi)型由模材料(玻璃或塑料纖維)及芯和外層尺寸決定,芯的尺寸大小決定光的傳輸質(zhì)量。常用的光纜有:
·8.3μm 芯、125μm外層、單模。
·62.5μm 芯、125μm外層、多模。
·50μm芯、125μm外層、多模。
·100μm芯、140μm外層、多模。
敷設(shè)方式
通信光纜自70年代開(kāi)始應(yīng)用以來(lái),現(xiàn)在已經(jīng)發(fā)展成為長(zhǎng)途干線(xiàn)、市內(nèi)電話(huà)中繼、水底和海底通信以及局域網(wǎng)、專(zhuān)用網(wǎng)等有線(xiàn)傳輸?shù)墓歉,并且已開(kāi)始向用戶(hù)接入網(wǎng)發(fā)展,由光纖到路邊(FTTC)、光纖到大樓(FTTB)等向光纖到戶(hù)(FTTH)發(fā)展。針對(duì)各種應(yīng)用和環(huán)境條件等,通信光纜有架空、直埋、管道、水底、室內(nèi)等敷設(shè)方式。
架空光纜
架空光纜是架掛在電桿上使用的光纜。這種敷設(shè)方式可以利用原有的架空明線(xiàn)桿路,節(jié)省建設(shè)費(fèi)用、縮短建設(shè)周期。架空光纜掛設(shè)在電桿上,要求能適應(yīng)各種自然環(huán)境。架空光纜易受臺(tái)風(fēng)、冰凌、洪水等自然災(zāi)害的威脅,也容易受到外力影響和本身機(jī)械強(qiáng)度減弱等影響,因此架空光纜的故障率高于直埋和管道式的光纖光纜。一般用于長(zhǎng)途二級(jí)或二級(jí)以下的線(xiàn)路,適用于專(zhuān)用網(wǎng)光纜線(xiàn)路或某些局部特殊地段。
架空光纜的敷設(shè)方法有兩種:
1、吊線(xiàn)式:先用吊線(xiàn)緊固在電桿上,然后用掛鉤將光纜懸掛在吊線(xiàn)上,光纜的負(fù)荷由吊線(xiàn)承載。
2、自承式:用一種自承式結(jié)構(gòu)的光纜,光纜呈“8”字型,上部為自承線(xiàn),光纜的負(fù)荷由自承線(xiàn)承載。
直埋光纜
這種光纜外部有鋼帶或鋼絲的鎧裝,直接埋設(shè)在地下,要求有抵抗外界機(jī)械損傷的性能和防止土壤腐蝕的性能。要根據(jù)不同的使用環(huán)境和條件選用不同的護(hù)層結(jié)構(gòu),例如在有蟲(chóng)鼠害的地區(qū),要選用有防蟲(chóng)鼠咬嚙的護(hù)層的光纜。
根據(jù)土質(zhì)和環(huán)境的不同,光纜埋入地下的深度一般在0.8m至1.2m之間。在敷設(shè)時(shí),還必須注意保持光纖應(yīng)變要在允許的限度內(nèi)。
管道光纜
管道敷設(shè)一般是在城市地區(qū),管道敷設(shè)的環(huán)境比較好,因此對(duì)光纜護(hù)層沒(méi)有特殊要求,無(wú)需鎧裝。
管道敷設(shè)前必須選下敷設(shè)段的長(zhǎng)度和接續(xù)點(diǎn)的位置。敷設(shè)時(shí)可以采用機(jī)械旁引或人工牽引。一次牽引的牽引力不要超過(guò)光纜的允許張力。
制作管道的材料可根據(jù)地理選用混凝土、石棉水泥、鋼管、塑料管等。
水底光纜
水底光纜是敷設(shè)于水底穿越河流、湖泊和灘岸等處的光纜。這種光纜的敷設(shè)環(huán)境比管道敷設(shè)、直埋敷設(shè)的條件差得多。水底光纜必須采用鋼絲或鋼帶鎧裝的結(jié)構(gòu),護(hù)層的結(jié)構(gòu)要根據(jù)河流的水文地質(zhì)情況綜合考慮。例如在石質(zhì)土壤、沖刷性強(qiáng)的季節(jié)性河床,光纜遭受磨損、拉力大的情況,不僅需要粗鋼絲做鎧裝,甚至要用雙層的鎧裝。施工的方法也要根據(jù)河寬、水深、流速、河床、流速、河床土質(zhì)等情況進(jìn)行選定。
水底光纜的敷設(shè)環(huán)境條件比直埋光纜嚴(yán)竣得多,修復(fù)故障的技術(shù)和措施也困難得多,所以對(duì)水度光纜的可靠性要求也比直埋光纜高。
海底光纜也是水底電纜,但是敷設(shè)環(huán)境條件比一般水底光纜更加嚴(yán)竣,要求更高,對(duì)海底光纜系統(tǒng)及其元器件的使用壽命要求在25年以上。
海底光纜:結(jié)構(gòu)與發(fā)展
1988年,在美國(guó)與英國(guó)、法國(guó)之間敷設(shè)了越洋的海底光纜(TAT-8)系統(tǒng),全長(zhǎng)6700公里。這條光纜含有3對(duì)光纖,每對(duì)的傳輸速率為280Mb/s,中繼站距離為67公里。這是第一條跨越大西洋的通信海底光纜,標(biāo)志著海底光纜時(shí)代的到來(lái)。1989年,跨越太平洋的海底光纜(全長(zhǎng)13200公里)也建設(shè)成功,從此,海底光纜就在跨越海洋的洲際海纜領(lǐng)域取代了同軸電纜,遠(yuǎn)洋洲際間不再敷設(shè)海底電纜。
光纖的傳輸容量大,中繼站間的距離長(zhǎng),適用于海底長(zhǎng)距離的通信。用于海底光纜的光纖比陸地光纜所用的光纖有更高的要求;要求低損耗、高強(qiáng)度、制造長(zhǎng)度長(zhǎng),光纜的中繼距離長(zhǎng),一般都在50公里以上,在光纖的傳輸性能方面要求在25年以?xún)?nèi)不會(huì)變化。在海底光纜的結(jié)構(gòu)方面:要求能經(jīng)受強(qiáng)大的壓力和拉力,特別是深海光纜(敷設(shè)在水深1000米以上海底的光纜),在敷設(shè)和維修作業(yè)中除了光纜本身的重量外,還要加上海浪加到光纜上的動(dòng)態(tài)應(yīng)力,在如此大的負(fù)荷條件下,光纜的應(yīng)變要限制在0.7~0.8%之內(nèi);海底光纜的結(jié)構(gòu)要求堅(jiān)固、材料輕,但不能用輕金屬鋁,因?yàn)殇X和海水會(huì)發(fā)生電化學(xué)反應(yīng)而產(chǎn)生氫氣,氫分子會(huì)擴(kuò)散到光纖的玻璃材料中,使光纖的損耗變大。因此海底光纜既要防止內(nèi)部產(chǎn)生氫氣,同時(shí)還要防止氫氣從外部滲入光纜。為此,在90年代初期,研制開(kāi)發(fā)出一種涂碳或涂鈦層的光纖,能阻止氫的滲透和防止化學(xué)腐蝕。光纖接頭也要求是高強(qiáng)度的,要求接續(xù)保持原有光纖的強(qiáng)度和原有光纖的表面不受損傷。
按照上述要求和特點(diǎn),海底光纜的基本結(jié)構(gòu)是將經(jīng)過(guò)一次或兩次涂層處理后的光纖螺旋地繞包在中心加強(qiáng)構(gòu)件(用鋼絲制成)的周?chē)。光纖設(shè)在螺旋形的U形槽塑料骨架中,槽內(nèi)填滿(mǎn)油膏或彈性塑料體形成纖芯。纖芯周?chē)酶邚?qiáng)度的鋼絲繞包,在繞包過(guò)程中要把所有縫隙都用防水材料填滿(mǎn),再在鋼絲周?chē)@包一層銅帶并焊接搭縫,使鋼絲和銅管形成一個(gè)抗壓和抗拉的聯(lián)合體,這個(gè)銅管還是傳送遠(yuǎn)供電流的導(dǎo)體。在鋼絲和銅管的外面還要再加一層聚乙烯護(hù)套。這樣嚴(yán)密多層的結(jié)構(gòu)是為了保護(hù)光纖、防止斷裂以及防止海水的侵入,同時(shí)也是為了在敷設(shè)和回收修理時(shí)可以承受巨大的張力和壓力。
即使是如此嚴(yán)密的防護(hù),在80年代末還是發(fā)現(xiàn)過(guò)深海光纜的聚乙烯絕緣體被鯊魚(yú)咬壞造成供電故障的實(shí)例。海纜系統(tǒng)的遠(yuǎn)程供電十分重要,海底電纜沿線(xiàn)的中繼器,要靠登陸局遠(yuǎn)程供電工作。海底光纜用的數(shù)字中繼器功能多,比海底電纜的模擬中繼器的用電量要大好幾倍,供電要求有很高的可靠性,不能中斷。因此在有鯊魚(yú)出沒(méi)的地區(qū),在海底光纜的外面還要加上鋼帶繞包兩層和再加一層聚乙烯外護(hù)套。
進(jìn)入90年代,海底光纜已經(jīng)和衛(wèi)星通信成為當(dāng)代洲際通信的主要手段。我國(guó)自1989年開(kāi)始到1998年底已經(jīng)先后參與了18條國(guó)際海底光纜的建設(shè)與投資。其中第一個(gè)在中國(guó)登陸的國(guó)際海底光纜系統(tǒng)是1993年12月建成的中國(guó)——日本(C-J)海底光纜系統(tǒng)。1996年2月中韓海底光纜建成開(kāi)通,分別在我國(guó)青島和韓國(guó)泰安登陸,全長(zhǎng)549公里;1997年11月,我國(guó)參與建設(shè)的全球海底光纜系統(tǒng)(FLAG)建成并投入運(yùn)營(yíng),這是第一條在我國(guó)登陸的洲際光纜系統(tǒng),分別在英國(guó)、埃及、印度、泰國(guó)、日本等12個(gè)國(guó)家和地區(qū)登陸,全長(zhǎng)27000多公里,其中中國(guó)段為622公里;由中國(guó)電信和新加坡等地的電信公司共同發(fā)起的亞歐海底光纜系統(tǒng),延伸段正在建設(shè),該系統(tǒng)連接亞洲、歐洲和大洋洲,在33個(gè)國(guó)家和地區(qū)登陸,全長(zhǎng)達(dá)38000公里,是世界上最長(zhǎng)的海底光纜,采用先進(jìn)的8波長(zhǎng)波分復(fù)用技術(shù),主干路由的設(shè)計(jì)容量高達(dá)40Gb/s,將在我國(guó)上海、汕頭兩地登陸,預(yù)計(jì)1999年底建成開(kāi)通。
海底光纜承擔(dān)的洲際通信業(yè)務(wù)量逐年上升,已經(jīng)超過(guò)了衛(wèi)星通信的業(yè)務(wù)量,成為現(xiàn)代洲際通信的主力。
最細(xì)的光纖
英國(guó)巴斯大學(xué)的物理學(xué)家們研究出世界上最細(xì)的用于通訊的光纜。每根光纜長(zhǎng)為10公里,每個(gè)結(jié)僅有0.00000001毫米粗。
塑料光纖
很早以前人們就考慮過(guò)用塑料來(lái)制造光纖,但是由于塑料光纖的衰減太大、帶寬太窄而沒(méi)有考慮用于通信。近年來(lái),通過(guò)日本、美國(guó)和歐洲一些國(guó)家的研究開(kāi)發(fā),降低了塑料光纖的衰減、增大了帶寬,使它用于短距離的接入網(wǎng)成為可能。
塑料光纖最主要的優(yōu)點(diǎn)是成本低、易于加工、重量輕、可撓性好、芯徑和數(shù)值孔徑都比較大,耦合效率較高,對(duì)施工和維護(hù)都比較方便。目前,塑料光纖大都用在短波長(zhǎng),GI結(jié)構(gòu)。據(jù)報(bào)道,日本和美國(guó)研制出的塑料光纖在100m上可以達(dá)到吉比特級(jí)。目前其市場(chǎng)正逐步上升,年增長(zhǎng)率約為20%,這很值得注意。
神鷹之目――導(dǎo)彈制導(dǎo)
用光纖制導(dǎo)導(dǎo)彈有些人可能迷惑不解。光纖細(xì)如蛛絲,高速飛行的導(dǎo)彈會(huì)不會(huì)拉斷光纖呢?這的確是光纖制導(dǎo)中的一個(gè)關(guān)鍵問(wèn)題。一般市場(chǎng)上出售的光纖的抗拉強(qiáng)度,遠(yuǎn)不能滿(mǎn)足光纖制導(dǎo)的要求。而光纖制導(dǎo)用的光纖,是經(jīng)過(guò)特殊加工的。這種光纖的外徑只有300微米左右,可承受巨大的拉力,足以滿(mǎn)足光纖制導(dǎo)的要求。
光纖制導(dǎo)就如同放風(fēng)箏一樣,制導(dǎo)導(dǎo)彈可從車(chē)輛和直升飛機(jī)上發(fā)射。操縱人員通過(guò)屏幕顯示器觀(guān)察導(dǎo)彈尋的器傳來(lái)的信號(hào),有如隨同導(dǎo)彈一起飛向目標(biāo),當(dāng)然其命中精度要高得多。導(dǎo)彈向前飛行時(shí),從彈體內(nèi)拉出一根細(xì)光纖。操縱手通過(guò)這根光纖向?qū)棸l(fā)出控制指令。導(dǎo)彈就如同長(zhǎng)“眼睛”一樣盯住目標(biāo),直到擊中為止。那么,光纖制導(dǎo)的導(dǎo)彈為什么能跟蹤目標(biāo)呢?原來(lái)這種導(dǎo)彈除了裝有發(fā)動(dòng)機(jī)、戰(zhàn)斗部分和控制系統(tǒng)外,還在導(dǎo)彈頭部安裝“成像式尋的器”,如電視攝像機(jī)、紅外線(xiàn)成像傳感器等。它們起到眼睛的作用。實(shí)際上,導(dǎo)彈并不是瞄準(zhǔn)目標(biāo)發(fā)射,而是垂直發(fā)射的。當(dāng)導(dǎo)彈飛到一定高度,尋的器“看”到地面情況,先將地物反射的光變換成電信號(hào),再把電信號(hào)轉(zhuǎn)變成一定波長(zhǎng)的光信號(hào),通過(guò)光纖下行傳回發(fā)射裝置,并在顯示器上顯示出圖像來(lái)。操縱手根據(jù)顯示的圖像選擇目標(biāo),發(fā)出指令并通過(guò)光纖上傳送給導(dǎo)彈,將導(dǎo)彈導(dǎo)引到目標(biāo)上。
這根纖細(xì)的光纖在導(dǎo)彈和發(fā)射裝置之間,起著雙向傳輸光信號(hào)的作用。那么,上行和下行的光信號(hào)能否產(chǎn)生干擾呢?如果上行和下行的光信號(hào)采用同一波長(zhǎng)的光,肯定會(huì)產(chǎn)生干擾的。但是光纖制導(dǎo)的下行光信號(hào)是鎵鋁砷激光器發(fā)出的波長(zhǎng)為850納米的紅外激光,而上行光信號(hào)是銦鎵砷磷發(fā)光二級(jí)管發(fā)射的波長(zhǎng)為1.06微米的紅外光,由于這兩束光的波長(zhǎng)不同,所以在光纖中傳播不會(huì)產(chǎn)生互相干擾,并且可以通過(guò)光纖兩端的雙向耦合器把兩者分開(kāi)。
光纖制導(dǎo)技術(shù),由于光信號(hào)在光纖中傳播,所以不受大氣的影響,抗干擾的能力強(qiáng),精度也高,由于光纖制導(dǎo)使用單根光纖,而紅外有線(xiàn)制導(dǎo)使用兩根導(dǎo)線(xiàn),所以又具有體積小、重量輕的特點(diǎn)。這些優(yōu)點(diǎn)使光纖制導(dǎo)具有廣闊的發(fā)展前景。
白衣天使的新搭檔
光纖在醫(yī)學(xué)上的應(yīng)用自然首推胃鏡了。
自1869年德國(guó)醫(yī)生庫(kù)什莫爾(Kussmaul)首先制成第一臺(tái)胃鏡以來(lái),胃鏡經(jīng)歷了100多年的歷史。由硬式而至半曲,由金屬而至光學(xué)纖維胃鏡。纖維胃鏡的普及確定是30年來(lái)胃腸病學(xué)領(lǐng)域劃時(shí)代的進(jìn)展,纖細(xì)而可屈的鏡身,靈活的操縱部,日益變廣的視角,越來(lái)越大的彎曲度使食道、胃、十二指腸粘膜在胃鏡視野內(nèi)暴露無(wú)遺,從而使消化科醫(yī)師對(duì)胃粘膜病變識(shí)別有如皮膚科醫(yī)師對(duì)皮損的觀(guān)察,清晰、形象而逼真,胃鏡檢查等于給醫(yī)生裝上了可深入病人體內(nèi)的“望遠(yuǎn)鏡”。對(duì)于一個(gè)熟練的操作者,也不再存在盲區(qū)。因此,胃鏡對(duì)臨床診斷及隨訪(fǎng)觀(guān)察都提供了最佳的工具。加上閉路電視及錄像裝置的配備,使圖像再現(xiàn)十分方便,使用胃鏡可以準(zhǔn)確而高效地診斷各種食道、胃、十二指腸疾病。