【導讀】本文分類介紹了各種光纖損耗產(chǎn)生的原因,通過實驗驗證了光纖端面質(zhì)量對光纖激光器輸出功率的影響,研究了光纖端面處理工藝流程,分析了光纖端面的切割和研磨方法,對光纖熔接過程提出了具體要求,為同類激光器的研制提供了參考依據(jù)。
1、前 言
光纖是圓柱形介質(zhì)波導由纖芯、包層和涂敷層3部分組成,一般單模和多模光纖的纖芯直徑分別為5~15μm和40~100μm,包層直徑大約為125~600μm。經(jīng)過處理的光纖端面,理想狀態(tài)是一個光滑平面。但實際中,光纖端面的加工往往不能達到理想狀態(tài),例如拋光不理想、有劃痕、表面或邊緣破碎損傷等等,都將使端面情況復雜化。對于光纖與激光器中其它元件的耦合以及光纖之間的熔接來說,要求光纖端部必須有光滑平整的表面,否則會增大損耗。本文分類介紹了光纖損耗產(chǎn)生的原因,通過實驗驗證了光纖端面質(zhì)量對光纖激光器輸出功率的影響,研究了光纖端面處理工藝流程,分析了光纖端面的切割和研磨方法,對光纖熔接過程提出了具體要求,為同類激光器的研制提供了參考依據(jù)。
2、光纖損耗種類
2.1光纖本征損耗
光纖本征損耗即光纖固有損耗,主要由于光纖機基質(zhì)材料石英玻璃本身缺陷和含有金屬過渡雜質(zhì)和OH- ,使光在傳輸過程中產(chǎn)生散射、吸收和色散,一般可分為散射損耗,吸收損耗和色散損耗。其中散射損耗是由于材料中原子密度的漲落,在冷凝過程中造成密度不均勻以及密度漲落造成濃度不均勻而產(chǎn)生的。吸收損耗是由于纖芯含有金屬過渡雜質(zhì)和OH-吸收光,特別是在紅外和紫外光譜區(qū)玻璃存在固有吸收。光纖色散按照產(chǎn)生的原因可分為三類,即材料色散、波導色散和模間色散。其中單模光纖是以基模傳輸,故沒有模間色散。在單模光纖本征因素中,對連接損耗影響最大的是模場直徑。單模光纖本征因素引起的連接損耗大約為0.014dB,當模場直徑失配20%時,將產(chǎn)生0.2dB的連接損耗[1]。多模光纖的歸一化頻率V>2.404,有多個波導模式傳輸,V值越大,模式越多,除了材料色散和波導色散,還有模間色散,一般模間色散占主要地位。所謂模間色散,是指光纖不同模式在同一頻率下的相位常數(shù)β不同,因此群速度不同而引起的色散。
此外,光纖幾何參數(shù)如光纖芯徑、包層外徑、芯/包層同心度、不圓度,光學參數(shù)如相對折射率、最大理論數(shù)值孔徑等,只要一項或多項失配,都將產(chǎn)生不同程度的本征損耗。
2.2光纖附加損耗
光纖的附加損耗一般由輻射損耗和應用損耗構(gòu)成。其中輻射損耗是由于光纖拉制工藝、光纖直徑、橢圓度的波動、套塑層溫度變化的脹縮和涂層低溫收縮導致光纖微彎所致;應用損耗是由于光纖的張力、彎曲、擠壓造成的宏彎和微彎所引起的損耗。
3、實驗裝置與結(jié)果
摻Er3+光纖環(huán)形腔激光器實驗裝置如圖1所示,泵浦光由波長980nmLD尾纖輸出,經(jīng)波分復用器(WDM)耦合進入環(huán)形光纖諧振腔,經(jīng)過耦合器分光后輸出激光。其中光纖光柵中心波長為1546.3nm,摻Er3+光纖長度為3m,摻雜濃度為400ppm,隔離器工作波長范圍為1535~1565nm,各元件插入損耗均為0.4dB,經(jīng)上述裝置輸出功率與輸入功率的關系曲線如圖2所示,最大輸出功率可達16.9mW。但由于光纖激光器各個部件之間均熔接在一起,插入損耗和熔接損耗對整個系統(tǒng)具有非常大的影響。在熔接質(zhì)量比較好的情況下,總體光光效率可達5.3%,在光纖焊接較差的情況下,焊點漏光嚴重,用轉(zhuǎn)換片可以看到明顯的泵浦光泄露,嚴重影響總體光光效率,二者功率相差23%左右。因此如何降低腔內(nèi)熔接損耗是影響激光器輸出功率的關鍵因素。
4、光纖端面處理
光纖端面處理也稱為端面制備,是光纖技術(shù)中的關鍵工序,主要包括剝覆、清潔和切割三個環(huán)節(jié)。端面質(zhì)量直接影響光纖激光器的泵浦光耦合效率和激光輸出功率。
4.1光纖涂覆層的剝除
去除光纖涂覆層是光纖端面處理的第一步?梢杂脛兙鉗和刀片兩種方法進行剝除。當采用剝線鉗剝除時,左手拇指和食指捏緊光纖,所露長度為5cm左右,余纖在無名指和小拇指之間自然打彎,以增加力度,防止打滑,剝線鉗應與光纖垂直,上方向內(nèi)傾斜一定角度,然后用鉗口輕輕卡住光纖,右手隨之用力,順光纖軸向平推出去,整個過程要自然流暢,爭取一次成功;當采用刀片剝除時,首先用濃硫酸浸泡3~5cm長的光纖端頭1~2分鐘,用酒精棉擦拭干凈[2]。左手捏緊光纖,持纖要平,防止打滑,右手用刀片沿光纖向端頭方向,與光纖成一定傾斜角度,順次剝除表面涂敷層聚合物材料,采用這種方法克服了采用化學溶劑法長時間浸泡光纖腐蝕嚴重的缺點,而且比用剝線鉗或刀片直接刮除更容易、去除更干凈,不易損傷光纖包層側(cè)面部分。
4.2包層表面的清潔
觀察光纖剝除部分的包層是否全部去除,若有殘留必須去掉,如有極少量不易剝除的涂覆層,可用棉球沾適量酒精,邊浸漬,邊擦除。將脫脂棉撕成層面平整的扇形小塊,沾少許酒精(以兩指相捏無溢出為宜),折成V形,夾住已剝覆的光纖,順光纖軸向擦拭,力爭一次成功,一塊棉花使用2~3次后要及時更換,每次要使用棉花的不同部位和層面,這樣既可提高棉花利用率,又防止對光纖包層表面的二次污染。
4.3光纖端面切割
切割是光纖端面制備中最關鍵的步驟,精密優(yōu)質(zhì)的切刀是基礎,嚴格科學的操作規(guī)范是保證。常用切刀有筆式切割刀和臺式光纖切割刀。使用筆式切割刀切割光纖時,光纖放置在手指上,另一手持刀在距離端頭5mm左右的位置處沿垂直光纖軸線方向切割光纖,然后輕輕將切除的端頭取下;使用臺式光纖切割刀進行操作時,首先要清潔切刀刀片、放置光纖的V型槽和定位壓板,并調(diào)整切刀位置使其擺放平穩(wěn)。切割時動作要平穩(wěn)自然,勿重、勿急,避免斷纖、斜角、毛刺和裂痕等不良端面的產(chǎn)生[3]。
表面的清潔和切割的時間應緊密銜接,不可間隔過長,特別是已制備的端面切勿放在污濁的空氣中。移動時要輕拿輕放,防止與其它物件擦碰。
5、光纖端面研磨
5.1研磨工藝
影響端面研磨質(zhì)量的主要因素主要有光纖的安裝與定位、端面研磨和檢查及測試。其中研磨及測試部分對研制優(yōu)質(zhì)光纖端面最為關鍵。直接影響光纖端面研磨效果的主要因素有:研磨機運轉(zhuǎn)穩(wěn)定,研磨砂紙顆粒均勻、正確使用研磨片、以及研磨參數(shù)設置(壓力和時間)[4]。
目前使用的研磨機按其運轉(zhuǎn)原理一般可分成齒輪傳動,皮帶傳動及連竿傳動三類。采用齒輪傳動方式,一般馬力較強,穩(wěn)定性較高;采用皮帶傳動方式,一般馬力較小,其轉(zhuǎn)速在高壓情況下易發(fā)生變化,此外皮帶隨時間老化后容易出現(xiàn)問題;采用連竿式傳動方式,噪音較大,穩(wěn)定性較低,機身容易抖動并且壓力偏低。
在加壓方面,有單點中心加壓,氣壓及液壓等方式。單點中心加壓易受外界影響變化,如每盤件數(shù)有限;氣壓較難控制穩(wěn)定性;而液壓操控較精確,力度相對較大,但價格昂貴。
在整個研磨過程中,不論是研磨機的速度,壓力,水或是研磨液,都會使研磨片的效果不一樣,故在選用研磨處理時,必須配合各項因素作全盤考慮,采用一個最合理的研磨方案。
5.2研磨工序
端面研磨過程經(jīng)過4道工序:粗磨、中磨、細磨、拋光。其中粗磨、中磨、細磨所用金剛砂紙的顆粒大小不同,分別為6,3,1和0.5[5]。4道工序的時間和壓力總共8個參數(shù),配用不同的方案,就可以得到端面質(zhì)量不同的結(jié)果。改變研磨過程中這8個參數(shù)得出最佳方案研磨光纖端面圖如圖3所示。
6、光纖熔接
在把光纖放入熔接機V型槽時,要確保V型槽底部無異物且光纖緊貼V型槽底部。機器自動熔接機器開始熔接時,首先將左右兩側(cè)V型槽中光纖相向推進,在推進過程中會產(chǎn)生一次短暫放電,其作用是清潔光纖端面灰塵,接著會把光纖繼續(xù)推進,直至光纖間隙處在原先所設置的位置上,這時熔接機測量切割角度,并把光纖端面附近的放大圖像顯示在屏幕上,如果出現(xiàn)圖4所示的圖像就要重做。纖芯/包層對準與端面制作一樣直接影響熔接損耗,熔接機會在X軸Y軸方向上同時進行對準,并且把軸向、軸心偏差參數(shù)顯示在屏幕上,如果誤差在允許范圍之內(nèi)就開始熔接。
觀察熔接結(jié)果熔接過后機器會自動評估,并顯示當前熔接損耗,由于是估計值,鼓顯示在0.3dB以上就必須重新制端面。在熔接過后,還要進一步觀察光纖熔接形狀,如果出現(xiàn)如圖5所示情況,必須調(diào)整機器設置,重新制作光纖端面后進行熔接,其具體實施方式如表1所示。
熔接過程中還應及時清潔熔接機V形槽、電極、物鏡和熔接室,隨時觀察熔接中有無氣泡、過細、過粗、虛熔、分離等不良現(xiàn)象,可采用OTDR跟蹤監(jiān)測結(jié)果,及時分析產(chǎn)生上述不良現(xiàn)象的原因,采取相應的改進措施。如果多次出現(xiàn)虛熔現(xiàn)象,應檢查熔接的兩根光纖的材料、型號是否匹配,切刀和熔接機是否被灰塵污染,并檢查電極氧化狀況,若均無問題,則應適當提高熔接電流。
由于光纖在連接時去掉了接頭部位的涂覆層其機械強度降低,因此要對接頭部位進行補強保護,可采用光纖熱縮保護管(熱縮管)保護光纖接頭部位。熱縮管應在剝覆前穿入,嚴禁在端面制備后穿入。將預先穿置光纖某一端的熱縮管移至光纖接頭處,使熔接點位于熱縮管中間,輕輕拉直光纖接頭,放入加熱器內(nèi)加熱,醋酸乙烯內(nèi)管熔化,聚乙烯管收縮后緊套在接續(xù)好的光纖上,由于此管內(nèi)有一根不銹鋼棒,不僅增加了抗拉強度(承受拉力為1000~2300g),同時也避免了因聚乙烯管的收縮而可能引起接續(xù)部位的微彎。
7、盤 纖
盤纖是一門技術(shù),科學的盤纖方法可使光纖布局合理、附加損耗小、經(jīng)得住時間和惡劣環(huán)境的考驗,可避免擠壓造成斷纖。盤纖方法有很多,可以從一側(cè)的光纖盤起,固定熱縮管,然后再處理另一側(cè)余纖,該方法可根據(jù)一側(cè)余纖長度靈活選擇熱縮管安放位置,方便、快捷,可避免出現(xiàn)急彎、小圈現(xiàn)象;也可以先將熱縮套管逐個放置于固定槽中,然后再處理兩側(cè)余纖,該方法有利于保護光纖接點,避免盤纖可能造成的損害,在光纖預留盤空間較小,光纖不易盤繞和固定時,常用此種方法;當個別光纖過長或過短時,可將其放在最后單獨盤繞;帶有特殊光器件時,可將其單獨盤繞處理,若與普通光纖共盤時,應將其輕置于普通光纖之上,兩者之間加緩沖襯墊,以防擠壓造成斷纖,且特殊光器件尾纖不可太長。根據(jù)實際情況,可采用采用圓、橢圓、“∝”等多種圖形盤纖,按余纖長度和預留盤空間大小,順勢自然盤繞,切勿生拉硬拽,盡可能最大限度利用預留盤空間,有效降低因盤纖帶來的附加損耗。
8、光纖熔接點損耗的測量
光纖熔接點損耗的測量是度量光纖接頭質(zhì)量的重要指標,使用光時域反射儀(OTDR)或熔接接頭的損耗評估方案等測量方法可以確定光纖接頭的光損耗。
OTDR的原理是:由于光纖的模場直徑影響其后向散射,因此在接頭兩邊的光纖可能會產(chǎn)生不同的后向散射,從而遮蔽接頭的真實損耗。如果從兩個方向測量接頭的損耗,并求出這兩個結(jié)果的平均值,便可消除單向OTDR測量的人為因素誤差。加強OTDR的監(jiān)測,對確保光纖熔接質(zhì)量,減少因盤纖帶來的附加損耗和封裝可能對光纖造成的損耗,具有十分重要的意義。在整個接續(xù)工作中,必須嚴格執(zhí)行OTDR的4道監(jiān)測程序:熔接過程中對每一根光纖進行實時跟蹤監(jiān)測,檢查每個熔接點的質(zhì)量;每次盤纖后,對所盤光纖進行檢驗以確定盤纖帶來的附加損耗;封裝前對所有光纖進行檢測,以查明有無漏測和對光纖及接頭有無擠壓;封裝后對所有光纖進行最后檢測,檢查封裝是否對光纖有損耗[6]。
此外某些熔接機使用一種光纖成像和測量幾何參數(shù)的斷面排列系統(tǒng),通過從兩個垂直方向觀察光纖,計算機處理并分析該圖像來確定包層偏移、纖芯畸變、光纖外徑變化和其他關鍵參數(shù),使用這些參數(shù)來評價接頭的損耗。依賴于接頭和損耗評估算法求得的接續(xù)損耗可能與真實值差異很大。
9、總 結(jié)
綜上建立一套光纖端面處理與熔接的流程如圖6所示。本文分類介紹了各種光纖損耗產(chǎn)生的原因,通過實驗驗證了光纖端面質(zhì)量對光纖激光器輸出功率的影響,研究了光纖端面處理工藝流程,分析了光纖端面的切割和研磨方法,對光纖熔接過程提出了具體要求,為同類激光器的研制提供了參考依據(jù)。