簡化網(wǎng)絡(luò)部署和升級
為了支持簡化且經(jīng)濟(jì)的網(wǎng)絡(luò)部署和升級,OEM都在尋求支持軟件重新配置并可以在多個(gè)類似設(shè)計(jì)中重復(fù)使用的射頻卡元件。
由于偶爾需要支持遠(yuǎn)程射頻頭內(nèi)的射頻卡,大多數(shù)射頻卡會采用一個(gè)基于鏈路到基站的恢復(fù)時(shí)鐘作為輸入時(shí)鐘。這些單輸入時(shí)鐘的質(zhì)量很差,可能需要清理明顯的抖動,為的是有效生成射頻卡上的其他時(shí)鐘。
因此,射頻卡時(shí)鐘樹的核心必須是一個(gè)具有可編程輸出頻率的抖動衰減器。本文的其余部分將討論性能屬性和需要這些性能屬性的原因,以及其他時(shí)鐘樹要求。
射頻卡架構(gòu)注意事項(xiàng)
當(dāng)今,大多數(shù)基站射頻卡設(shè)計(jì)執(zhí)行的許多操作都需要在數(shù)字域中建立或終止LTE或多載波GSM等協(xié)議信號。這是處理錯(cuò)誤校正、信道映射和數(shù)字分割I(lǐng)、Q數(shù)據(jù)流的更簡單方法。這種復(fù)合信號的復(fù)雜數(shù)據(jù)流還需要在發(fā)送和接收兩個(gè)方向進(jìn)行非常小心的濾波/信號處理。在數(shù)字域這樣做可以避免像精密元件值匹配的代價(jià)。
盡管數(shù)字操作多種多樣,在某些時(shí)候信號必須調(diào)制成一個(gè)載波,它可以在824MHz~2.62GHz范圍內(nèi)并以模擬信號傳輸。大多數(shù)基站架構(gòu)的地址多信道協(xié)議包括LTE、WiMax和多載波GSM使用的單級模擬轉(zhuǎn)換方法,如圖1所示。
圖1 典型的LTE射頻卡架構(gòu)
在發(fā)送端,除第一次調(diào)制外,各子載波都合并成一個(gè)數(shù)字流。這個(gè)基帶信號隨后由DAC轉(zhuǎn)換為移相偏移模擬I、Q數(shù)據(jù)流,然后通過正交模擬混頻器向上轉(zhuǎn)換為傳輸頻率?勺兒凸潭ㄔ鲆娣糯笃饕约半p工濾波器用于將有用信號沿著路徑提高到其傳輸頻段的所需強(qiáng)度,而只增加了少量噪聲及失真,同時(shí)最大限度減少了傳輸頻段以外的能量,以防止對其他射頻信道的干擾。
在接收端,射頻信號通常經(jīng)過放大、濾波,然后通過一個(gè)混頻器轉(zhuǎn)換為75~250MHz范圍的較低中頻(IF),在該范圍內(nèi)射頻信號通過一個(gè)可變數(shù)量、經(jīng)過濾波并最后由一個(gè)流水線ADC根據(jù)奈奎斯特準(zhǔn)則采樣進(jìn)一步放大。然后,在數(shù)字域中處理子載波的下變頻和解調(diào)。接收器的目標(biāo)是在ADC獲得最小附加噪聲和互調(diào)失真之前,完成這個(gè)信號調(diào)理,同時(shí)避免超過ADC的最大范圍。
射頻卡架構(gòu)師更愿意盡可能地集成時(shí)鐘樹。不僅是上述理由,而是由于每個(gè)時(shí)鐘樹元件都有自己的抖動貢獻(xiàn),它可以推動時(shí)鐘信號超出規(guī)范。有了這種集成,不僅可產(chǎn)生射頻與中頻調(diào)制時(shí)鐘,而且可以產(chǎn)生ADC和DAC的采樣時(shí)鐘及其他數(shù)字元件時(shí)鐘,如CPU、ASIC和FPGA。
與涉及射頻信號路徑的時(shí)鐘相比,這些數(shù)字元件的時(shí)鐘通常有更寬泛的規(guī)格;周期抖動是最常見的主要問題。當(dāng)隨著這些更敏感的時(shí)鐘在同一個(gè)芯片上生成這些時(shí)鐘時(shí),會出現(xiàn)兩個(gè)問題。首先,數(shù)字時(shí)鐘信號很少是射頻卡輸入時(shí)鐘信號的整倍數(shù),所以必須利用分?jǐn)?shù)反饋或小數(shù)輸出分頻技術(shù)來生成。然而,這兩種技術(shù)要在時(shí)鐘芯片內(nèi)和時(shí)鐘輸出上引入明顯的寄生含量。其次,數(shù)字時(shí)鐘芯片(或生成時(shí)產(chǎn)生的任何寄生含量)降至接近射頻、中頻或采樣頻率無法輕易過濾掉,所以必須加以避免。這些響應(yīng)區(qū)域以外的頻率分量可能降低信噪比,無論是否作為寬帶噪聲(如果沒有濾波)還是通過混疊進(jìn)入臨界頻率范圍都是如此。
混頻器、ADC和DAC的頻率影響
混頻器是一種用來將高頻率信號與低頻率信號相互轉(zhuǎn)換的模擬元件。在大多數(shù)基站射頻卡設(shè)計(jì)中,混頻器是將信號從射頻轉(zhuǎn)換到中頻或從基帶轉(zhuǎn)換到射頻。時(shí)鐘樹設(shè)計(jì)關(guān)注的主要問題是頻率混疊問題。當(dāng)多個(gè)頻率通過一個(gè)非線性器件時(shí),這些頻率會互相影響。這些相互作用被稱為互調(diào)積;祛l器的功能是獲得兩個(gè)輸入頻率并生成一個(gè)輸出頻率,要么是兩個(gè)頻率的和(上轉(zhuǎn)換),要么是兩個(gè)頻率的(降頻)差。
現(xiàn)今的射頻卡旨在恢復(fù)多載波性質(zhì)的信號。因此,理想的信號不是單音頻線的有用信號,而是包含全系列的音頻線,它均勻分布在整個(gè)響應(yīng)頻段。這些線代表被恢復(fù)的各個(gè)信道。不幸的是,因?yàn)檫@個(gè)多載波信號貫穿于混頻器等非線性元件,這里的每個(gè)信道都將彼此互調(diào)。信道的整齊間隔將導(dǎo)致奇數(shù)階積幾乎完全落在被恢復(fù)的信道頂部。放在混頻器前的濾波器將用于減弱噪聲,這將有助于實(shí)現(xiàn)偶數(shù)階積。放在混頻器后的濾波器將消除下降到響應(yīng)頻段以外的互調(diào)積,但對于帶內(nèi)奇數(shù)階積什么事也做不了,因?yàn)樗鼈兿陆档眠^于接近有用信號。
雖然放在混頻器后的帶通濾波器可以省去不想要的潔音線,這還算不錯(cuò),但采樣時(shí)鐘的任何抖動都會將潔音線轉(zhuǎn)入一個(gè)邊緣(skirt),如圖2所示。來自每個(gè)不受歡迎積的邊緣的尾巴將對濾波器通帶內(nèi)有一定的影響,這稱為寬帶噪聲。混頻器產(chǎn)生的任何時(shí)鐘(或ADC或DAC)必須有一個(gè)極低的噪聲層,以減少其寬帶噪聲。
圖2 相互混頻的效果
不需要的信號被稱為“干擾”或“阻斷(blocker)”,進(jìn)入混頻器的輸入將對時(shí)鐘信號的規(guī)格產(chǎn)生影響。它們可能包含通過天線接收的其他信號,或耦合進(jìn)入接收信號路徑的系統(tǒng)內(nèi)部信號。雖然可將有用信號從廣泛頻率中分離出來的“阻斷”可通過預(yù)濾波器得到明顯抑制,但接近有用信號的頻率仍會通過。此外,在像LTE這樣的協(xié)議中,有用信號具有較低的平均功率,即使是通過濾波器來衰減“阻斷”,可能仍然含有足夠的能量與有用信號競爭。
這種就是進(jìn)入混頻器的時(shí)鐘相位噪聲邊緣必須盡可能“窄”的原因。“阻斷”上相互混頻的相位噪聲的傳播必須保持在最低限度。射頻卡設(shè)計(jì)的主要挑戰(zhàn)之一是選擇卡的頻率,著眼于最大限度地從有用信號的頻率中分離“阻斷”及其互調(diào)積。
ADC抖動的其他影響
由于ADC是采樣數(shù)據(jù)系統(tǒng),而不是完全線性的轉(zhuǎn)換,在有用輸入信號、不需要的(“阻斷”)信號和采樣時(shí)鐘之間,它們也將受到互調(diào)積所有相同的影響。