摘要 目前智能天線已經(jīng)廣泛地應(yīng)用于實際的通信系統(tǒng)當(dāng)中,具有我國自主知識產(chǎn)權(quán)的TD-SCDMA系統(tǒng)也采用了智能天線。本文對智能天線不同于普通天線的測試項目進行了介紹,并提出了相應(yīng)的測試方法。
1、引言
智能天線技術(shù)的研究起始于20世紀60年代,最初的研究對象是雷達天線陣,主要目的是提高雷達的性能和電子對抗的能力。隨著移動通信的發(fā)展及對移動通信電波傳播、組網(wǎng)技術(shù)、天線理論等方面研究的逐漸深入,數(shù)字信號處理芯片處理能力不斷提高,利用數(shù)字技術(shù)在基帶形成天線波束成為可能。到了20世紀90年代,陣列處理技術(shù)引入移動通信領(lǐng)域,很快形成了一個新的研究熱點——智能天線。其中,我國在享有獨立自主知識產(chǎn)權(quán)的TD-SCDMA技術(shù)中,就已經(jīng)成功地引進了智能天線技術(shù)。從某種程度上可以說,智能天線是3G區(qū)別于2G系統(tǒng)的關(guān)鍵標志之一。
智能天線是利用數(shù)字信號處理技術(shù)產(chǎn)生空間定向波束,使天線的主波束跟蹤用戶信號到達方向,旁瓣或零陷對準干擾信號到達方向,利用多個天線單元空間的正交性和信號在傳輸方向上的差別,將同頻率或同時隙、同碼道的信號區(qū)分開來,最大限度地利用有限的信道資源。它在提高系統(tǒng)通信質(zhì)量、緩解無線通信業(yè)務(wù)日益發(fā)展與頻譜資源不足的矛盾以及降低系統(tǒng)整體造價和改善系統(tǒng)管理等方面,都具有獨特的優(yōu)點。
既然智能天線有如此多的好處,那么隨著TD-SCDMA系統(tǒng)商用化的腳步越來越近,作為TD-SCDMA系統(tǒng)的關(guān)鍵技術(shù)之一的智能天線技術(shù)也越來越得到大家的重視,因此智能天線的測試方法也就顯得至關(guān)重要。
2、智能天線的分類
智能天線按照類型可以分為全向智能天線陣和定向智能天線陣。
對于定向智能天線陣來說,包括以下三類測試參數(shù)。
(1)電路參數(shù)。包括垂直面電下傾角預(yù)設(shè)置值、垂直面電下傾角精度、垂直面機械下傾范圍;輸入阻抗、各單元端口駐波比、相鄰單元端口隔離度、每端口連續(xù)波功率容量。
(2)校準參數(shù)。包括校準端口至各單元端口的耦合度、校準端口至各單元端口幅度最大偏差、校準端口至各單元端口相位最大偏差、校準端口駐波比、校準通道耦合方向性。
(3)性能參數(shù)。包括各單元端口有源輸入回波損耗、垂直面半功率波束寬度、垂直面上部第一旁瓣抑制和下部第一零點填充;單元波束水平面半功率波束寬度、增益、前后比交叉極化比(軸向)和交叉極化比(±60°范圍內(nèi));業(yè)務(wù)波束水平面半功率波束寬度、視軸增益、水平面旁瓣電平和前后比、廣播波束水平面半功率波束寬度、視軸增益、視軸增益Φ=±60°處電平下降、半功率波束寬度內(nèi)的電平波動。
對于全向智能天線陣來說,也可以分為三類測試參數(shù)。
(1)電路參數(shù)。包括垂直面電下傾角預(yù)設(shè)置值、垂直面電下傾角精度;輸入阻抗、各單元端口駐波比、相鄰單元端口隔離度、每端口連續(xù)波功率容量。
(2)校準參數(shù)。包括校準端口至各單元端口的耦合度、校準端口至各單元端口幅度最大偏差、校準端口至各單元端口相位最大偏差、校準端口駐波比、校準通道耦合方向性。
(3)性能參數(shù)。包括各單元端口有源輸入回波損耗、垂直面半功率波束寬度、垂直面上部第一旁瓣抑制和下部第一零點填充;單元波束水平面半功率波束寬度、增益、前后比交叉極化比(軸向)和交叉極化比(±60°范圍內(nèi));業(yè)務(wù)波束水平面半功率波束寬度、視軸增益、水平面旁瓣電平、廣播波束視軸增益、方向圖圓度。